Sahil Takiar created HIVE-17178: ----------------------------------- Summary: Spark Partition Pruning Sink Operator can't target multiple Works Key: HIVE-17178 URL: https://issues.apache.org/jira/browse/HIVE-17178 Project: Hive Issue Type: Sub-task Components: Spark Reporter: Sahil Takiar Assignee: Sahil Takiar
A Spark Partition Pruning Sink Operator cannot be used to target multiple Map Work objects. The entire DPP subtree (SEL-GBY-SPARKPRUNINGSINK) is duplicated if a single table needs to be used to target multiple Map Works. The following query shows the issue: {code} set hive.spark.dynamic.partition.pruning=true; set hive.auto.convert.join=true; create table part_table_1 (col int) partitioned by (part_col int); create table part_table_2 (col int) partitioned by (part_col int); create table regular_table (col int); insert into table regular_table values (1); alter table part_table_1 add partition (part_col=1); insert into table part_table_1 partition (part_col=1) values (1), (2), (3), (4); alter table part_table_1 add partition (part_col=2); insert into table part_table_1 partition (part_col=2) values (1), (2), (3), (4); alter table part_table_2 add partition (part_col=1); insert into table part_table_2 partition (part_col=1) values (1), (2), (3), (4); alter table part_table_2 add partition (part_col=2); insert into table part_table_2 partition (part_col=2) values (1), (2), (3), (4); explain select * from regular_table, part_table_1, part_table_2 where regular_table.col = part_table_1.part_col and regular_table.col = part_table_2.part_col; {code} The explain plan is {code} STAGE DEPENDENCIES: Stage-2 is a root stage Stage-1 depends on stages: Stage-2 Stage-0 depends on stages: Stage-1 STAGE PLANS: Stage: Stage-2 Spark #### A masked pattern was here #### Vertices: Map 1 Map Operator Tree: TableScan alias: regular_table Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: col is not null (type: boolean) Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: col (type: int) outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Spark HashTable Sink Operator keys: 0 _col0 (type: int) 1 _col1 (type: int) 2 _col1 (type: int) Select Operator expressions: _col0 (type: int) outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Group By Operator keys: _col0 (type: int) mode: hash outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Spark Partition Pruning Sink Operator partition key expr: part_col Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE target column name: part_col target work: Map 2 Select Operator expressions: _col0 (type: int) outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Group By Operator keys: _col0 (type: int) mode: hash outputColumnNames: _col0 Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE Spark Partition Pruning Sink Operator partition key expr: part_col Statistics: Num rows: 1 Data size: 1 Basic stats: COMPLETE Column stats: NONE target column name: part_col target work: Map 3 Local Work: Map Reduce Local Work Map 3 Map Operator Tree: TableScan alias: part_table_2 Statistics: Num rows: 8 Data size: 8 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: col (type: int), part_col (type: int) outputColumnNames: _col0, _col1 Statistics: Num rows: 8 Data size: 8 Basic stats: COMPLETE Column stats: NONE Spark HashTable Sink Operator keys: 0 _col0 (type: int) 1 _col1 (type: int) 2 _col1 (type: int) Select Operator expressions: _col1 (type: int) outputColumnNames: _col0 Statistics: Num rows: 8 Data size: 8 Basic stats: COMPLETE Column stats: NONE Group By Operator keys: _col0 (type: int) mode: hash outputColumnNames: _col0 Statistics: Num rows: 8 Data size: 8 Basic stats: COMPLETE Column stats: NONE Spark Partition Pruning Sink Operator partition key expr: part_col Statistics: Num rows: 8 Data size: 8 Basic stats: COMPLETE Column stats: NONE target column name: part_col target work: Map 2 Local Work: Map Reduce Local Work Stage: Stage-1 Spark #### A masked pattern was here #### Vertices: Map 2 Map Operator Tree: TableScan alias: part_table_1 Statistics: Num rows: 8 Data size: 8 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: col (type: int), part_col (type: int) outputColumnNames: _col0, _col1 Statistics: Num rows: 8 Data size: 8 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 Inner Join 0 to 2 keys: 0 _col0 (type: int) 1 _col1 (type: int) 2 _col1 (type: int) outputColumnNames: _col0, _col1, _col2, _col3, _col4 input vertices: 0 Map 1 2 Map 3 Statistics: Num rows: 17 Data size: 17 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 17 Data size: 17 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Local Work: Map Reduce Local Work Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink {code} The DPP subtrees on Map 1 are exactly the same. We should be able to combine them, which avoids doing duplicate work. -- This message was sent by Atlassian JIRA (v6.4.14#64029)