Mostafa Mokhtar created HIVE-7723: ------------------------------------- Summary: Explain plan for complex query with lots of partitions is slow due to in-efficient collection used find a matching ReadEntity Key: HIVE-7723 URL: https://issues.apache.org/jira/browse/HIVE-7723 Project: Hive Issue Type: Bug Components: CLI, Physical Optimizer Affects Versions: 0.13.1 Reporter: Mostafa Mokhtar Assignee: Mostafa Mokhtar Fix For: 0.14.0
Explain on TPC-DS query 64 took 11 seconds, when the CLI was profiled it showed that ReadEntity.equals is taking ~40% of the CPU. ReadEntity.equals is called from the snippet below. Again and again the set is iterated over to get the actual match, a HashMap is a better option for this case as Set doesn't have a Get method. Also for ReadEntity equals is case-insensitive while hash is , which is an undesired behavior. {code} public static ReadEntity addInput(Set<ReadEntity> inputs, ReadEntity newInput) { // If the input is already present, make sure the new parent is added to the input. if (inputs.contains(newInput)) { for (ReadEntity input : inputs) { if (input.equals(newInput)) { if ((newInput.getParents() != null) && (!newInput.getParents().isEmpty())) { input.getParents().addAll(newInput.getParents()); input.setDirect(input.isDirect() || newInput.isDirect()); } return input; } } assert false; } else { inputs.add(newInput); return newInput; } // make compile happy return null; } {code} This is the query used : {code} select cs1.product_name ,cs1.store_name ,cs1.store_zip ,cs1.b_street_number ,cs1.b_streen_name ,cs1.b_city ,cs1.b_zip ,cs1.c_street_number ,cs1.c_street_name ,cs1.c_city ,cs1.c_zip ,cs1.syear ,cs1.cnt ,cs1.s1 ,cs1.s2 ,cs1.s3 ,cs2.s1 ,cs2.s2 ,cs2.s3 ,cs2.syear ,cs2.cnt from (select i_product_name as product_name ,i_item_sk as item_sk ,s_store_name as store_name ,s_zip as store_zip ,ad1.ca_street_number as b_street_number ,ad1.ca_street_name as b_streen_name ,ad1.ca_city as b_city ,ad1.ca_zip as b_zip ,ad2.ca_street_number as c_street_number ,ad2.ca_street_name as c_street_name ,ad2.ca_city as c_city ,ad2.ca_zip as c_zip ,d1.d_year as syear ,d2.d_year as fsyear ,d3.d_year as s2year ,count(*) as cnt ,sum(ss_wholesale_cost) as s1 ,sum(ss_list_price) as s2 ,sum(ss_coupon_amt) as s3 FROM store_sales JOIN store_returns ON store_sales.ss_item_sk = store_returns.sr_item_sk and store_sales.ss_ticket_number = store_returns.sr_ticket_number JOIN customer ON store_sales.ss_customer_sk = customer.c_customer_sk JOIN date_dim d1 ON store_sales.ss_sold_date_sk = d1.d_date_sk JOIN date_dim d2 ON customer.c_first_sales_date_sk = d2.d_date_sk JOIN date_dim d3 ON customer.c_first_shipto_date_sk = d3.d_date_sk JOIN store ON store_sales.ss_store_sk = store.s_store_sk JOIN customer_demographics cd1 ON store_sales.ss_cdemo_sk= cd1.cd_demo_sk JOIN customer_demographics cd2 ON customer.c_current_cdemo_sk = cd2.cd_demo_sk JOIN promotion ON store_sales.ss_promo_sk = promotion.p_promo_sk JOIN household_demographics hd1 ON store_sales.ss_hdemo_sk = hd1.hd_demo_sk JOIN household_demographics hd2 ON customer.c_current_hdemo_sk = hd2.hd_demo_sk JOIN customer_address ad1 ON store_sales.ss_addr_sk = ad1.ca_address_sk JOIN customer_address ad2 ON customer.c_current_addr_sk = ad2.ca_address_sk JOIN income_band ib1 ON hd1.hd_income_band_sk = ib1.ib_income_band_sk JOIN income_band ib2 ON hd2.hd_income_band_sk = ib2.ib_income_band_sk JOIN item ON store_sales.ss_item_sk = item.i_item_sk JOIN (select cs_item_sk ,sum(cs_ext_list_price) as sale,sum(cr_refunded_cash+cr_reversed_charge+cr_store_credit) as refund from catalog_sales JOIN catalog_returns ON catalog_sales.cs_item_sk = catalog_returns.cr_item_sk and catalog_sales.cs_order_number = catalog_returns.cr_order_number group by cs_item_sk having sum(cs_ext_list_price)>2*sum(cr_refunded_cash+cr_reversed_charge+cr_store_credit)) cs_ui ON store_sales.ss_item_sk = cs_ui.cs_item_sk WHERE cd1.cd_marital_status <> cd2.cd_marital_status and i_color in ('maroon','burnished','dim','steel','navajo','chocolate') and i_current_price between 35 and 35 + 10 and i_current_price between 35 + 1 and 35 + 15 and ss_sold_date between '2000-01-01' and '2000-12-31' group by i_product_name ,i_item_sk ,s_store_name ,s_zip ,ad1.ca_street_number ,ad1.ca_street_name ,ad1.ca_city ,ad1.ca_zip ,ad2.ca_street_number ,ad2.ca_street_name ,ad2.ca_city ,ad2.ca_zip ,d1.d_year ,d2.d_year ,d3.d_year ) cs1 JOIN (select i_product_name as product_name ,i_item_sk as item_sk ,s_store_name as store_name ,s_zip as store_zip ,ad1.ca_street_number as b_street_number ,ad1.ca_street_name as b_streen_name ,ad1.ca_city as b_city ,ad1.ca_zip as b_zip ,ad2.ca_street_number as c_street_number ,ad2.ca_street_name as c_street_name ,ad2.ca_city as c_city ,ad2.ca_zip as c_zip ,d1.d_year as syear ,d2.d_year as fsyear ,d3.d_year as s2year ,count(*) as cnt ,sum(ss_wholesale_cost) as s1 ,sum(ss_list_price) as s2 ,sum(ss_coupon_amt) as s3 FROM store_sales JOIN store_returns ON store_sales.ss_item_sk = store_returns.sr_item_sk and store_sales.ss_ticket_number = store_returns.sr_ticket_number JOIN customer ON store_sales.ss_customer_sk = customer.c_customer_sk JOIN date_dim d1 ON store_sales.ss_sold_date_sk = d1.d_date_sk JOIN date_dim d2 ON customer.c_first_sales_date_sk = d2.d_date_sk JOIN date_dim d3 ON customer.c_first_shipto_date_sk = d3.d_date_sk JOIN store ON store_sales.ss_store_sk = store.s_store_sk JOIN customer_demographics cd1 ON store_sales.ss_cdemo_sk= cd1.cd_demo_sk JOIN customer_demographics cd2 ON customer.c_current_cdemo_sk = cd2.cd_demo_sk JOIN promotion ON store_sales.ss_promo_sk = promotion.p_promo_sk JOIN household_demographics hd1 ON store_sales.ss_hdemo_sk = hd1.hd_demo_sk JOIN household_demographics hd2 ON customer.c_current_hdemo_sk = hd2.hd_demo_sk JOIN customer_address ad1 ON store_sales.ss_addr_sk = ad1.ca_address_sk JOIN customer_address ad2 ON customer.c_current_addr_sk = ad2.ca_address_sk JOIN income_band ib1 ON hd1.hd_income_band_sk = ib1.ib_income_band_sk JOIN income_band ib2 ON hd2.hd_income_band_sk = ib2.ib_income_band_sk JOIN item ON store_sales.ss_item_sk = item.i_item_sk JOIN (select cs_item_sk ,sum(cs_ext_list_price) as sale,sum(cr_refunded_cash+cr_reversed_charge+cr_store_credit) as refund from catalog_sales JOIN catalog_returns ON catalog_sales.cs_item_sk = catalog_returns.cr_item_sk and catalog_sales.cs_order_number = catalog_returns.cr_order_number group by cs_item_sk having sum(cs_ext_list_price)>2*sum(cr_refunded_cash+cr_reversed_charge+cr_store_credit)) cs_ui ON store_sales.ss_item_sk = cs_ui.cs_item_sk WHERE cd1.cd_marital_status <> cd2.cd_marital_status and i_color in ('maroon','burnished','dim','steel','navajo','chocolate') and i_current_price between 35 and 35 + 10 and i_current_price between 35 + 1 and 35 + 15 and ss_sold_date between '2001-01-01' and '2001-12-31' group by i_product_name ,i_item_sk ,s_store_name ,s_zip ,ad1.ca_street_number ,ad1.ca_street_name ,ad1.ca_city ,ad1.ca_zip ,ad2.ca_street_number ,ad2.ca_street_name ,ad2.ca_city ,ad2.ca_zip ,d1.d_year ,d2.d_year ,d3.d_year ) cs2 ON cs1.item_sk=cs2.item_sk where cs1.syear = 2000 and cs2.syear = 2000 + 1 and cs2.cnt <= cs1.cnt and cs1.store_name = cs2.store_name and cs1.store_zip = cs2.store_zip order by cs1.product_name ,cs1.store_name ,cs2.cnt; {code} -- This message was sent by Atlassian JIRA (v6.2#6252)