Mostafa Mokhtar created HIVE-8044: ------------------------------------- Summary: CBO : Container size and hash table size should be taken into account before deciding to do a MapJoin Key: HIVE-8044 URL: https://issues.apache.org/jira/browse/HIVE-8044 Project: Hive Issue Type: Bug Components: CBO Affects Versions: 0.14.0, 0.13.1 Reporter: Mostafa Mokhtar Assignee: Harish Butani Fix For: 0.14.0
Currently CBO uses NDV not join selectivity in computeInnerJoinSelectivity which results in in-accurate estimate number of rows. I looked at the plan for TPC-DS Q17 after the latest set of changes and I am concerned that the estimate of rows for the join of store_sales and store_returns is so low, as you can see the estimate is 8461 rows for joining 1.2795706667449066E8 with 1.2922108035889767E7. {code} HiveJoinRel(condition=[AND(=($130, $3), =($129, $15))], joinType=[inner]): rowcount = 1079.1345153548855, cumulative cost = {8.271845957931738E10 rows, 0.0 cpu, 0.0 io}, id = 517 HiveJoinRel(condition=[=($0, $38)], joinType=[inner]): rowcount = 6.669190301841249E7, cumulative cost = {4.300510912631623E10 rows, 0.0 cpu, 0.0 io}, id = 402 HiveTableScanRel(table=[[catalog_sales]]): rowcount = 4.3005109025E10, cumulative cost = {0}, id = 2 HiveFilterRel(condition=[in($15, '2000Q1', '2000Q2', '2000Q3')]): rowcount = 101.31622746185853, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 181 HiveTableScanRel(table=[[d3]]): rowcount = 73049.0, cumulative cost = {0}, id = 3 HiveJoinRel(condition=[AND(AND(=($3, $61), =($2, $60)), =($9, $67))], joinType=[inner]): rowcount = 8461.27236667537, cumulative cost = {8.26517592150266E10 rows, 0.0 cpu, 0.0 io}, id = 515 HiveJoinRel(condition=[=($27, $0)], joinType=[inner]): rowcount = 1.2795706667449066E8, cumulative cost = {8.251088004031622E10 rows, 0.0 cpu, 0.0 io}, id = 417 HiveTableScanRel(table=[[store_sales]]): rowcount = 8.2510879939E10, cumulative cost = {0}, id = 5 HiveFilterRel(condition=[=($15, '2000Q1')]): rowcount = 101.31622746185853, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 173 HiveTableScanRel(table=[[d1]]): rowcount = 73049.0, cumulative cost = {0}, id = 0 HiveJoinRel(condition=[=($0, $24)], joinType=[inner]): rowcount = 1.2922108035889767E7, cumulative cost = {8.332595810316228E9 rows, 0.0 cpu, 0.0 io}, id = 424 HiveTableScanRel(table=[[store_returns]]): rowcount = 8.332595709E9, cumulative cost = {0}, id = 7 HiveFilterRel(condition=[in($15, '2000Q1', '2000Q2', '2000Q3')]): rowcount = 101.31622746185853, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 177 HiveTableScanRel(table=[[d2]]): rowcount = 73049.0, cumulative cost = {0}, id = 1 {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332)