Hi,

Hudi is complaining because '_hoodie_is_soft_deleted' is present in the
parquet file's schema but is not present in your incoming schema.

>From my experience, I would say it is a standard practice to add an extra
field which acts as a marker for soft deletion and needs to be persisted
with every record. So I would suggest adding an extra field in the schema
and solve your use case.

@Sivabalan <n.siv...@gmail.com> can probably add more here.

On Fri, Jul 15, 2022 at 11:21 AM aakash aakash <email2aak...@gmail.com>
wrote:

> Hi,
>
> We have a use case to perform soft delete over some record keys where we
> nullify non-key fields and ignore any update for this record later on.  We
> thought of using a hudi meta field: "_hoodie_is_soft_deleted" as hudi hard
> delete (_hoodie_is_deleted) does to make it simple to identify if the
> platform perform any soft delete but I am getting avro field not found
> exception when we perform another soft delete on the same index, please let
> me know if you have any advise how to fix it or if this is a wrong
> approach, we wanted to avoid adding any extra field in the customer schema
> and behind the scene filter the soft delete record as done for hard delete
> but still keep the record in the system.
>
>
> Hudi : 0.8.0
> Exception stacktrace:
>
> 2/07/14 22:08:21 WARN TaskSetManager: Lost task 5.0 in stage 93.0 (TID
> 33283, 172.25.31.77, executor 3):
> org.apache.hudi.exception.HoodieUpsertException: Error upserting bucketType
> UPDATE for partition :5
>   at
>
> org.apache.hudi.table.action.commit.BaseSparkCommitActionExecutor.handleUpsertPartition(BaseSparkCommitActionExecutor.java:288)
>   at
>
> org.apache.hudi.table.action.commit.BaseSparkCommitActionExecutor.lambda$execute$ecf5068c$1(BaseSparkCommitActionExecutor.java:139)
>   at
>
> org.apache.spark.api.java.JavaRDDLike$$anonfun$mapPartitionsWithIndex$1.apply(JavaRDDLike.scala:102)
>   at
>
> org.apache.spark.api.java.JavaRDDLike$$anonfun$mapPartitionsWithIndex$1.apply(JavaRDDLike.scala:102)
>   at
>
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$25.apply(RDD.scala:853)
>   at
>
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$25.apply(RDD.scala:853)
>   at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
>   at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
>   at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
>   at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
>   at org.apache.spark.rdd.RDD$$anonfun$7.apply(RDD.scala:337)
>   at org.apache.spark.rdd.RDD$$anonfun$7.apply(RDD.scala:335)
>   at
>
> org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1182)
>   at
>
> org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1156)
>   at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:1091)
>   at
>
> org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:1156)
>   at
>
> org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:882)
>   at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:335)
>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:286)
>   at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
>   at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
>   at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
>   at org.apache.spark.scheduler.Task.run(Task.scala:123)
>   at
>
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
>   at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
>   at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
>   at
>
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>   at
>
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>   at java.lang.Thread.run(Thread.java:748)
> Caused by: org.apache.hudi.exception.HoodieException:
> org.apache.hudi.exception.HoodieException:
> java.util.concurrent.ExecutionException:
> org.apache.hudi.exception.HoodieException: operation has failed
>   at
>
> org.apache.hudi.table.action.commit.SparkMergeHelper.runMerge(SparkMergeHelper.java:102)
>   at
>
> org.apache.hudi.table.action.commit.BaseSparkCommitActionExecutor.handleUpdateInternal(BaseSparkCommitActionExecutor.java:317)
>   at
>
> org.apache.hudi.table.action.commit.BaseSparkCommitActionExecutor.handleUpdate(BaseSparkCommitActionExecutor.java:308)
>   at
>
> org.apache.hudi.table.action.commit.BaseSparkCommitActionExecutor.handleUpsertPartition(BaseSparkCommitActionExecutor.java:281)
>   ... 30 more
> Caused by: org.apache.hudi.exception.HoodieException:
> java.util.concurrent.ExecutionException:
> org.apache.hudi.exception.HoodieException: operation has failed
>   at
>
> org.apache.hudi.common.util.queue.BoundedInMemoryExecutor.execute(BoundedInMemoryExecutor.java:143)
>   at
>
> org.apache.hudi.table.action.commit.SparkMergeHelper.runMerge(SparkMergeHelper.java:100)
>   ... 33 more
> Caused by: java.util.concurrent.ExecutionException:
> org.apache.hudi.exception.HoodieException: operation has failed
>   at java.util.concurrent.FutureTask.report(FutureTask.java:122)
>   at java.util.concurrent.FutureTask.get(FutureTask.java:192)
>   at
>
> org.apache.hudi.common.util.queue.BoundedInMemoryExecutor.execute(BoundedInMemoryExecutor.java:141)
>   ... 34 more
> Caused by: org.apache.hudi.exception.HoodieException: operation has failed
>   at
>
> org.apache.hudi.common.util.queue.BoundedInMemoryQueue.throwExceptionIfFailed(BoundedInMemoryQueue.java:247)
>   at
>
> org.apache.hudi.common.util.queue.BoundedInMemoryQueue.readNextRecord(BoundedInMemoryQueue.java:226)
>   at
>
> org.apache.hudi.common.util.queue.BoundedInMemoryQueue.access$100(BoundedInMemoryQueue.java:52)
>   at
>
> org.apache.hudi.common.util.queue.BoundedInMemoryQueue$QueueIterator.hasNext(BoundedInMemoryQueue.java:277)
>   at
>
> org.apache.hudi.common.util.queue.BoundedInMemoryQueueConsumer.consume(BoundedInMemoryQueueConsumer.java:36)
>   at
>
> org.apache.hudi.common.util.queue.BoundedInMemoryExecutor.lambda$null$2(BoundedInMemoryExecutor.java:121)
>   at java.util.concurrent.FutureTask.run(FutureTask.java:266)
>   ... 3 more
> Caused by: org.apache.parquet.io.InvalidRecordException: Parquet/Avro
> schema mismatch: Avro field '_hoodie_is_soft_deleted' not found
>   at
>
> org.apache.parquet.avro.AvroRecordConverter.getAvroField(AvroRecordConverter.java:225)
>   at
>
> org.apache.parquet.avro.AvroRecordConverter.<init>(AvroRecordConverter.java:130)
>   at
>
> org.apache.parquet.avro.AvroRecordConverter.<init>(AvroRecordConverter.java:95)
>   at
>
> org.apache.parquet.avro.AvroRecordMaterializer.<init>(AvroRecordMaterializer.java:33)
>   at
>
> org.apache.parquet.avro.AvroReadSupport.prepareForRead(AvroReadSupport.java:138)
>   at
>
> org.apache.parquet.hadoop.InternalParquetRecordReader.initialize(InternalParquetRecordReader.java:183)
>   at
> org.apache.parquet.hadoop.ParquetReader.initReader(ParquetReader.java:156)
>   at org.apache.parquet.hadoop.ParquetReader.read(ParquetReader.java:135)
>   at
>
> org.apache.hudi.common.util.ParquetReaderIterator.hasNext(ParquetReaderIterator.java:49)
>   at
>
> org.apache.hudi.common.util.queue.IteratorBasedQueueProducer.produce(IteratorBasedQueueProducer.java:45)
>   at
>
> org.apache.hudi.common.util.queue.BoundedInMemoryExecutor.lambda$null$0(BoundedInMemoryExecutor.java:92)
>   at java.util.concurrent.FutureTask.run(FutureTask.java:266)
>   at
> java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
>   ... 4 more
>
>
>
>
>
>
>
> How we add this column to the Spark dataframe :
>
> object SoftDeleteColInfo {
>   val softDeleteHudiMetaCol = "_hoodie_is_soft_deleted"
>   val softDeleteStrVal = "true"
>
>   val softDeletedUDF = udf(softDeleted)
>
>   def softDeleted() = (arg: String) => arg
> }
>
> sparkSession.udf.register("softDeletedUDF",
> SoftDeleteColInfo.softDeletedUDF)
> df.withColumn(softDeleteHudiMetaCol,
> functions.callUDF("softDeletedUDF", lit("true")))
>

Reply via email to