GitHub user wangzhewwzz added a comment to the discussion: 关于电网拓扑数据导入
后面的"edges":里面的文件是不是都是我发给您的 "path":
"/loader/power_data/edge_connected_to.csv"
原始邮件
发件人:dosubot[bot] ***@***.***>
发件时间:2025年12月8日 15:41
收件人:apache/incubator-hugegraph ***@***.***>
抄送:wangzhewwzz ***@***.***>, Mention ***@***.***>
主题:Re: [apache/incubator-hugegraph] 关于电网拓扑数据导入 (Discussion #2917)
你的数据结构和需求已经很清楚,下面给你一份适配你电网拓扑数据的 HugeGraph schema.groovy 和 struct.json
配置模板,并说明如何实现双向连接和 HTTP 工作流集成。
1. schema.groovy 示例(每种点类型和边类型都单独定义,便于扩展)
// 属性定义 schema.propertyKey("id").asText().ifNotExist().create();
schema.propertyKey("name").asText().ifNotExist().create();
schema.propertyKey("objectType").asText().ifNotExist().create();
schema.propertyKey("objectHandle").asText().ifNotExist().create();
schema.propertyKey("deviceType").asText().ifNotExist().create();
schema.propertyKey("internalEndpointNo").asInt().ifNotExist().create();
schema.propertyKey("terminalNo").asInt().ifNotExist().create();
schema.propertyKey("usage").asText().ifNotExist().create();
schema.propertyKey("powerFlowDirection").asInt().ifNotExist().create();
schema.propertyKey("belongSubstation").asText().ifNotExist().create();
schema.propertyKey("belongFeeder").asText().ifNotExist().create(); // 顶点标签
schema.vertexLabel("Substation").properties("id", "name", "objectType",
"objectHandle", "deviceType", "internalEndpointNo", "terminalNo", "usage",
"powerFlowDirection", "belongSubstation",
"belongFeeder").primaryKeys("id").ifNotExist().create(); s
chema.vertexLabel("LineSegment").properties("id", "name", "objectType",
"objectHandle", "deviceType", "internalEndpointNo", "terminalNo", "usage",
"powerFlowDirection", "belongSubstation",
"belongFeeder").primaryKeys("id").ifNotExist().create();
schema.vertexLabel("LineSwitch").properties("id", "name", "objectType",
"objectHandle", "deviceType", "internalEndpointNo", "terminalNo", "usage",
"powerFlowDirection", "belongSubstation",
"belongFeeder").primaryKeys("id").ifNotExist().create();
schema.vertexLabel("StationHouse").properties("id", "name", "objectType",
"objectHandle", "deviceType", "internalEndpointNo", "terminalNo", "usage",
"powerFlowDirection", "belongSubstation",
"belongFeeder").primaryKeys("id").ifNotExist().create(); //
边标签(每种类型对每种类型都定义一条边,便于扩展和双向连接)
schema.edgeLabel("Substation2LineSegment").sourceLabel("Substation").targetLabel("LineSegment").properties().ifNotExist().create();
schema.edgeLabel("LineSegment2S
tationHouse").sourceLabel("LineSegment").targetLabel("StationHouse").properties().ifNotExist().create();
schema.edgeLabel("LineSegment2LineSegment").sourceLabel("LineSegment").targetLabel("LineSegment").properties().ifNotExist().create();
schema.edgeLabel("StationHouse2LineSwitch").sourceLabel("StationHouse").targetLabel("LineSwitch").properties().ifNotExist().create();
// ...根据实际需要继续补充 // 反向边(如需双向,定义反向边标签)
schema.edgeLabel("LineSegment2Substation").sourceLabel("LineSegment").targetLabel("Substation").properties().ifNotExist().create();
schema.edgeLabel("StationHouse2LineSegment").sourceLabel("StationHouse").targetLabel("LineSegment").properties().ifNotExist().create();
// ...以此类推
2. struct.json 示例(关键点:source/target 字段要和顶点主键一致)
{ "vertices": [ { "label":
"Substation", "input": {
"type": "file", "path":
"vertex_substation-1.csv", "format": "CSV",
"header": ["id", "name", "objectType", "objectHandle",
"deviceType", "internalEndpointNo", "terminalNo", "usage",
"powerFlowDirection", "belongSubstation", "belongFeeder"],
"charset": "UTF-8" },
"null_values": ["NULL", "null", ""] }, //
其他顶点类型同理 ], "edges": [ {
"label": "Substation2LineSegment", "source":
["from"], "target": ["to"], "input":
{ "type": "file",
"path": "edge_substation2linesegment.csv", &
nbsp; "format": "CSV", "header": ["from",
"to"] }, "field_mapping": {
"from": "id", "to": "id"
} }, // 反向边 {
"label": "LineSegment2Substation",
"source": ["to"], "target": ["from"],
"input": { "type": "file",
"path": "edge_substation2linesegment.csv",
"format": "CSV", "header": ["from", "to"]
}, "field_mapping": {
"from": "id", "to": "id"
} } // 其他边类型同理 ] }
3. 如何实现双向连接
HugeGraph 的边是有向的,A→B 和 B→A 需要各导入一条边。你可以用脚本或 Excel 处理,把所有边数据复制一份,把 from/to
互换,合并后导入即可(比如 edge_xxx.csv 里每条边都正反各一条)。这样查询时可以支持任意方向的遍历和分析。官方文档说明
4. 导入命令与验证
导入命令示例:
sh bin/hugegraph-loader.sh -g hugegraph -f struct.json -s schema.groovy -h
127.0.0.1 -p 8080
导入后可用 curl 验证:
curl "http://localhost:8080/graphs/hugegraph/graph/vertices" curl
"http://localhost:8080/graphs/hugegraph/graph/edges"
5. Dify 工作流 HTTP 集成
HugeGraph 支持标准 RESTful API,Dify 工作流可以像集成 Neo4j 一样通过 HTTP 访问
HugeGraph,进行增删查改、批量导入、图查询等。比如创建边:
POST http://localhost:8080/graphs/hugegraph/graph/edges Content-Type:
application/json { "label": "Substation2LineSegment", "outV":
"BDZ-3002", "inV": "XLD-3445", "outVLabel": "Substation",
"inVLabel": "LineSegment" }
详见 RESTful API 文档。
6. 扩展性建议
每种点类型、边类型都单独定义,后续扩展新类型只需补充 schema 和 struct 配置即可。
边标签建议按“类型A2类型B”命名,便于管理和后续扩展。
数据量大时建议分批导入,或用 Loader 的断点续传功能。
schema 变更需注意边标签的单一源/目标类型限制,新增类型时需新增边标签。
如需更详细的配置模板或自动化脚本,可以继续补充你的具体需求。
To reply, just mention @dosu.
How did I do? Good | Irrelevant | Incorrect | Verbose |
Hallucination | Report 🐛 | Other
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you were mentioned.
GitHub link:
https://github.com/apache/incubator-hugegraph/discussions/2917#discussioncomment-15193308
----
This is an automatically sent email for [email protected].
To unsubscribe, please send an email to: [email protected]