[
https://issues.apache.org/jira/browse/KAFKA-19238?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
karthickthavasiraj09 resolved KAFKA-19238.
------------------------------------------
Resolution: Fixed
> We're facing issue in Kafka while reading data from Azure event hubs through
> Azure Databricks
> ---------------------------------------------------------------------------------------------
>
> Key: KAFKA-19238
> URL: https://issues.apache.org/jira/browse/KAFKA-19238
> Project: Kafka
> Issue Type: Test
> Components: connect, consumer, network
> Affects Versions: 3.3.1
> Environment: Production
> Reporter: karthickthavasiraj09
> Priority: Blocker
> Labels: BLOCKER, important
>
> We had an issue while reading data from the Azure Event hubs through Azure
> Databricks. After working with Microsoft team they confirmed that there's an
> issue from Kafka side. I'm sharing the debug logs shared by the Microsoft
> team below,
> The good job shared on March 20th, so we would not be able to download the
> backend logs _(as it's > 20 days)_
> But for the bad job:
> [https://adb-2632737963103362.2.azuredatabricks.net/jobs/911028616577296/runs/939144212532710?o=2632737963103362]
> that took 49m, we see that task 143 takes 46 mins _(out of the job duration
> of_
> _49m 30s)_
> _25/04/15 14:21:44 INFO KafkaBatchReaderFactoryWithRowBytesAccumulator:
> Creating Kafka reader
> topicPartition=voyager-prod-managedsql-cus.order.orders.orderitem-0
> fromOffset=16511904 untilOffset=16658164, for query
> queryId=dd660d4d-05cc-4a8e-8f93-d202ec78fec3
> runId=af7eb711-7310-4788-85b7-0977fc0756b7 batchId=73 taskId=143
> partitionId=0_
> _._
> _25/04/15 15:07:21 INFO KafkaDataConsumer: From Kafka
> topicPartition=voyager-prod-managedsql-cus.order.orders.orderitem-0
> groupId=spark-kafka-source-da79e0fc-8ee5-40f5-a127-7b31766b3022--1737876659-executor
> read 146260 records through 4314 polls (polled out 146265 records), taking
> 2526471821132 nanos, during time span of 2736294068630 nanos._
> And this task is waiting for Kafka to respond for most of the time as we can
> see from the threads:
> _Executor task launch worker for task 0.0 in stage 147.0 (TID 143)_
> _sun.nio.ch.EPollArrayWrapper.epollWait(Native Method)_
> _sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:269)_
> _sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:93)_
> _sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:86) - locked
> sun.nio.ch.EPollSelectorImpl@54f8f9b6_
> _sun.nio.ch.SelectorImpl.select(SelectorImpl.java:97)_
> _kafkashaded.org.apache.kafka.common.network.Selector.select(Selector.java:874)_
> _kafkashaded.org.apache.kafka.common.network.Selector.poll(Selector.java:465)_
> _kafkashaded.org.apache.kafka.clients.NetworkClient.poll(NetworkClient.java:560)_
> _kafkashaded.org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:280)_
> _kafkashaded.org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:251)_
> _kafkashaded.org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:242)_
> _kafkashaded.org.apache.kafka.clients.consumer.KafkaConsumer.position(KafkaConsumer.java:1759)_
> _kafkashaded.org.apache.kafka.clients.consumer.KafkaConsumer.position(KafkaConsumer.java:1717)_
> _org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumer.getAvailableOffsetRange(KafkaDataConsumer.scala:110)_
> _org.apache.spark.sql.kafka010.consumer.InternalKafkaConsumer.fetch(KafkaDataConsumer.scala:84)_
> _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.$anonfun$fetchData$1(KafkaDataConsumer.scala:593)_
> _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer$$Lambda$4556/228899458.apply(Unknown
> Source)_
> _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.timeNanos(KafkaDataConsumer.scala:696)_
> _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.fetchData(KafkaDataConsumer.scala:593)_
> _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.fetchRecord(KafkaDataConsumer.scala:517)_
> _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.$anonfun$get$1(KafkaDataConsumer.scala:325)_
> _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer$$Lambda$4491/342980175.apply(Unknown
> Source)_
> _org.apache.spark.util.UninterruptibleThread.runUninterruptibly(UninterruptibleThread.scala:77)_
> _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.runUninterruptiblyIfPossible(KafkaDataConsumer.scala:686)_
> _org.apache.spark.sql.kafka010.consumer.KafkaDataConsumer.get(KafkaDataConsumer.scala:301)_
> _org.apache.spark.sql.kafka010.KafkaBatchPartitionReader.next(KafkaBatchPartitionReader.scala:106)_
> _._
--
This message was sent by Atlassian Jira
(v8.20.10#820010)