Highlighting
Highlighting in Solr allows fragments of documents that match the user's query to be included with the query response. The fragments are included in a special section of the response (the highlighting section), and the client uses the formatting clues also included to determine how to present the snippets to users. Fragments are a portion of a document field that matches all or some of the query and are"fragments" herein are sometimes also referred to as snippets or passages. Highlighting is extremely configurable, perhaps more than any other part of Solr. There are many parameters each for fragment sizing, formatting, ordering, backup/alternate behavior, and more options that are hard to categorize. Nonetheless, highlighting is very simple to use.
Basic Usage (TODO)
TODO document some (all) basic/common parameters here; perhaps include examples. Params: hl, hl.fl, hl.q, hl.snippets, hl.method
· hl: Use this parameter to enable or disable highlighting. The default is "false", so unless this is explicitly set to "true", no highlighting will occur.
· hl.method: The highlighting implementation to use. Acceptable values are: unified, original, fastvector, and postings. The default if not specified is original. See the Choosing a Highlighter section below for more details on the differences between the available highlighters.
With any of the example configsets shipped with Solr, simply enabling highlighting with hl=true will populate the response to a query with highlight information. However, a few additional parameters provide additional customization:
· hl.fl: Specifies a list of fields to highlight. Accepts a comma- or space-delimited list of fields for which Solr should generate highlighted snippets. If left blank, highlights the defaultSearchField (or the field specified the df parameter if used) for the StandardRequestHandler. For the DisMaxRequestHandler, the fields are used as defaults. A wildcard of '*' (asterisk) can be used to match field globs, such as 'text_*' or even '*' to highlight on all fields where highlighting is possible. When using '*', consider adding hl.requireFieldMatch=true.
· hl.q: A query to use for highlighting. The main query (q=) will be used if this is not defined. This parameter allows you to highlight different terms than those being used to retrieve documents.
· hl.snippets: Specifies maximum number of highlighted snippets to generate per field. It is possible for any number of snippets from zero to this value to be generated. This parameter accepts per-field overrides, such as hl.<field>.snippets.
· hl.tag.pre: Specifies the “tag” to use before a highlighted term. This can be any Unicode string, but is most often an HTML or XML tag.
· hl.tag.post: Specifies the “tag” to use after a highlighted term. This can be any Unicode string, but is most often an HTML or XML tag.
These are not the only parameters available, but are commonly used. TODO
Highlighting in the Query Response
In the response to a query, Solr includes highlighting data in a section separate from the documents. It is up to a client to determine how to process this response and display the highlights to users.
Using the example documents included with Solr, we can see how this might work:
In response to a query such as http://localhost:8983/solr/gettingstarted/select?hl=on&q=apple&wt=json&hl.fl=manu&fl=id,name,manu,cat, we get a response such as this (truncated slightly for space):
{
	"responseHeader": {
		...
		}
	},
	"response": {
		"numFound": 1,
		"start": 0,
		"docs": [{
			"id": "MA147LL/A",
			"name": "Apple 60 GB iPod with Video Playback Black",
			"manu": "Apple Computer Inc.",
			"cat": [
				"electronics",
				"music"
]
		}]
	},
	"highlighting": {
		"MA147LL/A": {
			"manu": [
				"Apple Computer Inc."
]
		}
	}
}
Note the two sections docs and highlighting. The docs section contains the fields of the document requested with the fl parameter of the query (only "id", "name", "manu", and "cat"). The highlighting section includes the ID of each document, and the field that contains the highlighted portion. In this example, we used the hl.fl parameter to say we wanted query terms highlighted in the "manu" field. When there is a match to the query term in that field, it will be included for each document ID in the list.
Note in this example that the query term in the highlighting section of the response has HTML tags and around it. These are set in the example solrconfig.xml used to create the collection with the hl.simple.pre and hl.simple.post parameters, which define the tags to use to call out, as it were, the highlighted term. This will assist the client displaying results to properly format the highlighted term. These tag parameters can be overwritten at query time, or solrconfig.xml can be updated to always use another set of tags. These tags do not need to be HTML or XML and can be any string of Unicode characters.
Choosing a Highlighter
Solr provides a HighlightComponent (a SearchComponent) and it's in the default list of components for search handlers. It offers a somewhat unified API over multiple actual highlighting implementations (or simply "highlighters") that do the business of highlighting. There are many parameters supported by more than one highlighter, and sometimes the implementation details and semantics will be a bit different, so don't expect identical results when switching highlighters. You should use the hl.method parameter to choose a highlighter but it's also possible to explicitly configure an implementation by class name in solrconfig.xml.
There are four highlighters available that can be chosen at runtime with the hl.method parameter, in order of general recommendation:
· Unified Highlighter: (hl.method=unified) The Unified Highlighter is the newest highlighter (as of Solr 6.4), which stands out as the most flexible and performant of the options. We recommend that you try this highlighter even though it isn't the default (yet). It supports the most common highlighting parameters and can handle just about any query accurately, even SpanQueries (e.g. as seen from the surround parser). A strong benefit to this highlighter is that you can opt to configure Solr to put more information in the underlying index to speed up highlighting of large documents; multiple configurations are supported, even on a per-field basis. There is little or no such flexibility for the other highlighters. More on this below.
· Original Highlighter : (hl.method=original, the default) The Original Highlighter, sometimes called the "Standard Highlighter" or "Default Highlighter", is Lucene's original highlighter – a venerable option with a high degree of customization options. Its ability to highlight just about any query accurately is a strength shared with the Unified Highlighter (they share some code for this in fact). The original Highlighter will normally analyze stored text on the fly in order to highlight. It will use full term vectors if available, however in this mode it isn't as fast as the Unified Highlighter or FastVector Highlighter. This highlighter is a good choice for a wide variety of search use-cases. Where it falls short is performance; it's often twice as slow as the Unified Highlighter. And despite being the most customizable, it doesn't have a BreakIterator based fragmenter (all the others do), which could pose a challenge for some languages.
· FastVector Highlighter : (hl.method=fastVector) The FastVector Highlighter requires full term vector options (termVectors, termPositions, and termOffsets) on the field, and is optimized with that in mind. Its nearly as configurable as the original highlighter with some variability. It notably supports multi-colored highlighting such that different query words can be denoted in the fragment with different marking, usually expressed as an HTML tag with a unique color. Its query-representation is less advanced than the Standard Highlighter (or UnifiedHighlighter): for example it will not work well with the surround parser, and there are multiple reported bugs pertaining to queries with stop-words. Note that both the FastVector Highlighter and the Original Highlighter can be used in conjunction in a search request to highlight some fields with one and some the other. In contrast, the other highlighters can only be chosen exclusively.
· Postings Highlighter : (hl.method=postings) The Postings Highlighter is the ancestor of the Unified Highlighter, supporting a subset of its options and none of its index configuration flexibility - it requires storeOffsetsWithPositions on all fields to highlight. This option is here for backwards compatibility; if you find you need it, please share your experience with the Solr community.
The Unified Highlighter and Postings Highlighter from which it derives, are exclusively configured via search parameters. In contrast, some settings for the Original Highlighter and FastVector Highlighter are set in solrconfig.xml. There's a robust example of the latter in the "techproducts" configset.
Schema Options and Performance Trade-Offs
Fundamental to the internals of highlighting are detecting the offsets of the individual words that match the query. Some of the highlighters can run the stored text through the analysis chain defined in the schema, some can look them up from postings, and some can look them up from term vectors. These choices have different trade-offs:
· Analysis: Supported by the Unified and Original Highlighters. If you don't go out of your way to configure the other options below, the highlighter will analyze the stored text on the fly (during highlighting) to calculate offsets. The benefit of this approach is that your index won't grow larger with any extra data that isn't strictly necessary for highlighting. The down side is that highlighting speed is roughly linear with the amount of text to process, with a large factor being the complexity of your analysis chain. For "short" text, this is a good choice. This can also be a good choice if highlighting performance is less important than storage utilization.
· Postings: Supported by the Unified and Postings Highlighters. Set storeOffsetsWithPositions to true. This adds a moderate amount of extra data to the index but it speeds up highlighting tremendously, especially compared to analysis with longer text fields. However, wildcard queries don't benefit (falling back to analysis)will fall back to analysis unless you add light term vectors “light” term vectors are added.
· with Term Vectors (light): Supported only by the Unified Highlighter. AdditionallyTo enable this mode set termVectors to true but no other term vector related options on the field that will be highlighted. This adds even more data to the index than just storeOffsetsWithPositions, but not as much as enabling all the extra term vector options do; and furthermore it'll Term Vectors are only be accessed by the highlighter when a wildcard query is used and will prevent a fall back to Analysis of the stored text. This is definitely the fastest option for highlighting wildcard queries on large text fields.
· Term Vectors (full): Supported by the Unified, FastVector, and Original Highlighters. Set termVectors, termPositions, and termOffsets to true, and potentially termPayloads for advanced use cases. This adds substantial weight to the index – similar in size to the compressed stored text. If you are using the Unified Highlighter thean this is not a recommended configuration since it's slower and heavier than postings with light term vectors. However, this could still be potentially useful if term vectors are already enabled for another use case and you do not wish to incur the storage cost of enabling positions in postings.

	[image: C:\cc4ce5b9513cd90e2fa5e16f559fc5a7]
	Faceting
	[image: C:\3e34cd2e451eb01c52bfb36767ef06cf]Searching
	 Spell Checking
	[image: C:\80793090c996e88913638c6fa20742a2]

[bookmark: _GoBack]Highlighter Specific Options (TODO flesh out further with all highlighter options)
The following are options that are specific to one or more highlighter implementations:
	Option
	Type
	Description
	Supported Highlighters

	hl.maxAnalyzedChars
	int
	The maximum number of characters to analyze
	Unified

	hl.highlightMultiTerm
	bool
	Emables highlighting for range/wildcard/fuzzy/prefix queries at some cost
	Unified

	hl.usePhraseHighlighter
	bool
	Enables phrase highlighting
	Unified

	hl.offsetSource
	String
	Specifies which offset source to use. If not specified, will use what’s available in the index. Prefers postings.
	Unified

	hl.cacheFieldValCharsThreshold
	int
	Controls how many characters from a field are cached.
	Unified

image2.tmp

image3.tmp

image1.tmp

