[ 
https://issues.apache.org/jira/browse/LUCENE-8374?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16527640#comment-16527640
 ] 

Adrien Grand commented on LUCENE-8374:
--------------------------------------

bq. What about also putting the rank structure in there too?

In general the rule is that if you plan to have something in memory all the 
time then it should go to the meta file, and otherwise to the data file. We 
just need to be careful to not load too much stuff in memory in order to keep 
the index memory-efficient. Holding the block index in memory (one long every 
65k docs) might be reasonable. I'm less sure about the long[32], though if I 
understand things correctly, having it in memory wouldn't help much compared to 
putting it at the beginning of the DENSE blocks and loading it only when we 
know we'll need at least one doc from this block.

For what it's worth, the codec API makes it very easy to deal with backward 
compatibility, so there would be no problem with completely changing the 
default doc-value format in a minor release. It doesn't have to wait for 8.0.

bq. What is the contract for the slicer?

It may seek to any legal offset (positive and less than the file length), 
doesn't need to be strictly forward, could be backward.

> Reduce reads for sparse DocValues
> ---------------------------------
>
>                 Key: LUCENE-8374
>                 URL: https://issues.apache.org/jira/browse/LUCENE-8374
>             Project: Lucene - Core
>          Issue Type: Improvement
>          Components: core/codecs
>    Affects Versions: master (8.0), 7.3.1
>            Reporter: Toke Eskildsen
>            Priority: Major
>
> The {{Lucene70DocValuesProducer}} has the internal classes 
> {{SparseNumericDocValues}} and {{BaseSortedSetDocValues}} (sparse code path), 
> which again uses {{IndexedDISI}} to handle the docID -> value-ordinal lookup. 
> The value-ordinal is the index of the docID assuming an abstract tightly 
> packed monotonically increasing list of docIDs: If the docIDs with 
> corresponding values are {{[0, 4, 1432]}}, their value-ordinals will be {{[0, 
> 1, 2]}}.
> h2. Outer blocks
> The lookup structure of {{IndexedDISI}} consists of blocks of 2^16 values 
> (65536), where each block can be either {{ALL}}, {{DENSE}} (2^12 to 2^16 
> values) or {{SPARSE}} (< 2^12 values ~= 6%). Consequently blocks vary quite a 
> lot in size and ordinal resolving strategy.
> When a sparse Numeric DocValue is needed, the code first locates the block 
> containing the wanted docID flag. It does so by iterating blocks one-by-one 
> until it reaches the needed one, where each iteration requires a lookup in 
> the underlying {{IndexSlice}}. For a common memory mapped index, this 
> translates to either a cached request or a read operation. If a segment has 
> 6M documents, worst-case is 91 lookups. In our web archive, our segments has 
> ~300M values: A worst-case of 4577 lookups!
> One obvious solution is to use a lookup-table for blocks: A long[]-array with 
> an entry for each block. For 6M documents, that is < 1KB and would allow for 
> direct jumping (a single lookup) in all instances. Unfortunately this 
> lookup-table cannot be generated upfront when the writing of values is purely 
> streaming. It can be appended to the end of the stream before it is closed, 
> but without knowing the position of the lookup-table the reader cannot seek 
> to it.
> One strategy for creating such a lookup-table would be to generate it during 
> reads and cache it for next lookup. This does not fit directly into how 
> {{IndexedDISI}} currently works (it is created anew for each invocation), but 
> could probably be added with a little work. An advantage to this is that this 
> does not change the underlying format and thus could be used with existing 
> indexes.
> h2. The lookup structure inside each block
> If {{ALL}} of the 2^16 values are defined, the structure is empty and the 
> ordinal is simply the requested docID with some modulo and multiply math. 
> Nothing to improve there.
> If the block is {{DENSE}} (2^12 to 2^16 values are defined), a bitmap is used 
> and the number of set bits up to the wanted index (the docID modulo the block 
> origo) are counted. That bitmap is a long[1024], meaning that worst case is 
> to lookup and count all set bits for 1024 longs!
> One known solution to this is to use a [rank 
> structure|[https://en.wikipedia.org/wiki/Succinct_data_structure]]. I 
> [implemented 
> it|[https://github.com/tokee/lucene-solr/blob/solr5894/solr/core/src/java/org/apache/solr/search/sparse/count/plane/RankCache.java]]
>  for a related project and with that (), the rank-overhead for a {{DENSE}} 
> block would be long[32] and would ensure a maximum of 9 lookups. It is not 
> trivial to build the rank-structure and caching it (assuming all blocks are 
> dense) for 6M documents would require 22 KB (3.17% overhead). It would be far 
> better to generate the rank-structure at index time and store it immediately 
> before the bitset (this is possible with streaming as each block is fully 
> resolved before flushing), but of course that would require a change to the 
> codec.
> If {{SPARSE}} (< 2^12 values ~= 6%) are defined, the docIDs are simply in the 
> form of a list. As a comment in the code suggests, a binary search through 
> these would be faster, although that would mean seeking backwards. If that is 
> not acceptable, I don't have any immediate idea for avoiding the full 
> iteration.
> I propose implementing query-time caching of both block-jumps and inner-block 
> lookups for {{DENSE}} (using rank) as first improvement and an index-time 
> {{DENSE}}-rank structure for future improvement. As query-time caching is 
> likely to be too costly for rapidly-changing indexes, it should probably be 
> an opt-in in solrconfig.xml.
> h2. Some real-world observations
> This analysis was triggered by massive (10x) slowdown problems with both 
> simple querying and large exports from our webarchive index after upgrading 
> from Solr 4.10 to 7.3.1. The query-matching itself takes ½-2 seconds, but 
> returning the top-10 documents takes 5-20 seconds (~50 non-stored DocValues 
> fields), up from ½-2 seconds in total from Solr 4.10 (more of a mix of stored 
> vs. DocValues, so might not be directly comparable).
> Measuring with VisualVM points to {{NIOFSIndexInput.readInternal}} as *the* 
> hotspot.  We ran some tests with simple queries on a single 307,171,504 
> document segment with different single-value DocValued fields in the fl and 
> got
>  
> ||Field||Type||Docs with value||Docs w/ val %||Speed in docs/sec||
> |url|String|307,171,504|100%|12,500|
> |content_type_ext|String|224,375,378|73%|360|
> |author|String|1,506,365|0.5%|1,100|
> |crawl_date|DatePoint|307,171,498|~100%|90|
> |content_text_length|IntPoint|285,800,212|93%|410|
> |content_length|IntPoint|307,016,816|99.9%|100|
> |crawl_year|IntPoint|307,171,498|~100%|14,500|
> |last_modified|DatePoint|6,835,065|2.2%|570|
> |source_file_offset|LongPoint|307,171,504|100%|28,000|
>  Note how both url and source_file_offset are very fast and also has a value 
> for _all_ documents. Contrary to this, content_type_ext is very slow and 
> crawl_date is extremely slow and as they both have _nearly_ all documents, I 
> presume they are using {{IndexedDISI#DENSE}}. last_modified is also quite 
> slow and presumably uses {{IndexedDISI#SPARSE}}.
> The only mystery is crawl_year which is also present in _nearly_ all 
> documents, but is very fast. I have no explanation for that one yet.
> I hope to take a stab at this around August 2018, but no promises.



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to