[
https://issues.apache.org/jira/browse/LUCENE-8689?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16766916#comment-16766916
]
Adrien Grand commented on LUCENE-8689:
--------------------------------------
Have you tried a 8.0 snapshot? The codec now encodes the set of documents that
have a value in a way that produces more efficient iterators. See LUCENE-8585.
This issue makes me wonder that we could optimize the default codec for the
case that all values are the same and that the only thing that matters is the
set of documents that have a value for the field. Today the codec does some
work to track the index of the current document in the set of documents with a
value, which it uses to address the data-structure that records values. If all
values are the same, then we don't need to track this index and could
potentially have faster iterators.
> Boolean DocValues Codec Implementation
> --------------------------------------
>
> Key: LUCENE-8689
> URL: https://issues.apache.org/jira/browse/LUCENE-8689
> Project: Lucene - Core
> Issue Type: Improvement
> Components: core/codecs
> Reporter: Ivan Mamontov
> Priority: Minor
> Labels: patch, performance
> Attachments: LUCENE-8689.patch, SynteticDocValuesBench70.java,
> results2.png
>
>
> To avoid issues where some products become available/unavailable at some
> point in time after being out-of-stock, e-commerce search system designers
> need to embed up-to-date information about inventory availability right into
> the search engines. Key requirement is to be able to accurately filter out
> unavailable products and use availability as one of ranking signals. However,
> keeping availability data up-to-date is a non-trivial task. Straightforward
> implementation based on a partial updates of Lucene documents causes Solr
> cache trashing with negatively affected query performance and resource
> utilization.
> As an alternative solution we can use DocValues and build-in in-place
> updates where field values can be independently updated without touching
> inverted index, and while filtering by DocValues is a bit slower, overall
> performance gain is better. However existing long based docValues are not
> sufficiently optimized for carrying boolean inventory availability data:
> * All DocValues queries are internally rewritten into
> org.apache.lucene.search.DocValuesNumbersQuery which is based on direct
> iteration over all column values and typically much slower than using
> TermsQuery.
> * On every commit/merge codec has to iterate over DocValues a couple times
> in order to choose the best compression algorithm suitable for given data. As
> a result for 4K fields and 3M max doc merge takes more than 10 minutes
> This issue is intended to solve these limitations via special bitwise doc
> values format that uses internal representation of
> org.apache.lucene.util.FixedBitSet in order to store indexed values and load
> them at search time as a simple long array without additional decoding. There
> are several reasons for this:
> * At index time encoding is super fast without superfluous iterations over
> all values to choose the best compression algorithm suitable for given data.
> * At query time decoding is also simple and fast, no GC pressure and extra
> steps
> * Internal representation allows to perform random access in constant time
> Limitations are:
> * Does not support non boolean fields
> * Boolean fields must be represented as long values 1 for true and 0 for
> false
> * Current implementation does not support advanced bit set formats like
> org.apache.lucene.util.SparseFixedBitSet or
> org.apache.lucene.util.RoaringDocIdSet
> In order to evaluate performance gain I've wrote a simple JMH based benchmark
> [^SynteticDocValuesBench70.java] which allows to estimate a relative cost of
> DF filters. This benchmark creates 2 000 000 documents with 5 boolean columns
> with different density, where 10, 35, 50, 60 and 90 is an amount of documents
> with value 1. Each method tries to enumerate over all values in synthetic
> store field in all available ways:
> * baseline – in almost all cases Solr uses FixedBitSet in filter cache to
> keep store availability. This test just iterates over all bits.
> * docValuesRaw – iterates over all values of DV column, the same code is
> used in "post filtering", sorting and faceting.
> * docValuesNumbersQuery – iterates over all values produced by query/filter
> store:1, actually there is the only query implementation for DV based fields
> - DocValuesNumbersQuery. This means that Lucene rewrites all term, range and
> filter queries for non indexed filed into this fallback implementation.
> * docValuesBooleanQuery – optimized variant of DocValuesNumbersQuery, which
> support only two values – 0/1
> !results2.png!
> Query latency is similar to FixedBitSet with negligible overhead 1-2 ms.
> DocValuesNumbersQuery 6-7 times slower compared to boolean query. Raw doc
> values iterator is also not so fast as it performs on-the-fly decoding.
> Attached patch contains two parts:
> * bitwise codec and all required structures and producers/consumers
> * boolean query which removes TwoPhaseIterator, AllBits approximation and
> missing docs lookup
> * docValues codec test green except non long values cases
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]