fmcquillan99 commented on pull request #524: URL: https://github.com/apache/madlib/pull/524#issuecomment-784616302
(1) turn off verbose write to console ```madlib=# SELECT madlib.madlib_keras_fit('iris_train_packed', -- source table madlib(# 'iris_model', -- model output table madlib(# 'model_arch_library', -- model arch table madlib(# 1, -- model arch id madlib(# $$ loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] $$, -- compile_params madlib(# $$ batch_size=5, epochs=3, callbacks=[TensorBoard(log_dir="/tmp/tensorflow/scalars")]$$, -- fit_params madlib(# 10 -- num_iterations madlib(# ); INFO: Time for training in iteration 1: 2.63317084312 sec CONTEXT: PL/Python function "madlib_keras_fit" INFO: Time for training in iteration 2: 0.106519937515 sec CONTEXT: PL/Python function "madlib_keras_fit" INFO: Time for training in iteration 3: 0.105093002319 sec CONTEXT: PL/Python function "madlib_keras_fit" INFO: Time for training in iteration 4: 0.102034807205 sec CONTEXT: PL/Python function "madlib_keras_fit" INFO: Time for training in iteration 5: 0.100094079971 sec CONTEXT: PL/Python function "madlib_keras_fit" INFO: Time for training in iteration 6: 0.102514982224 sec CONTEXT: PL/Python function "madlib_keras_fit" INFO: Time for training in iteration 7: 0.103103876114 sec CONTEXT: PL/Python function "madlib_keras_fit" INFO: Time for training in iteration 8: 0.101779222488 sec CONTEXT: PL/Python function "madlib_keras_fit" INFO: Time for training in iteration 9: 0.099191904068 sec CONTEXT: PL/Python function "madlib_keras_fit" INFO: select (madlib.internal_keras_evaluate( DETAIL: ARRAY[class_text], ARRAY[attributes], ARRAY[class_text_shape], ARRAY[attributes_shape], $MAD$ {"class_name": "Sequential", "keras_version": "2.1.6", "config": [{"class_name": "Dense", "config": {"kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "scale": 1.0, "seed": null, "mode": "fan_avg"}}, "name": "dense_1", "kernel_constraint": null, "bias_regularizer": null, "bias_constraint": null, "dtype": "float32", "activation": "relu", "trainable": true, "kernel_regularizer": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "units": 10, "batch_input_shape": [null, 4], "use_bias": true, "activity_regularizer": null}}, {"class_name": "Dense", "config": {"kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "scale": 1.0, "seed": null, "mode": "fan_avg"}}, "name": "dense_2", "kernel_constraint": null, "bias_regularizer": null, "bias_constraint": null, "activation": "relu", "trainable": true, "kernel_regularizer": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "units": 10, "use_bias": true, "activity_regularizer": null}}, {"class_name": "Dense", "config": {"kernel_initializer": {"class_name": "VarianceScaling", "config": {"distribution": "uniform", "scale": 1.0, "seed": null, "mode": "fan_avg"}}, "name": "dense_3", "kernel_constraint": null, "bias_regularizer": null, "bias_constraint": null, "activation": "softmax", "trainable": true, "kernel_regularizer": null, "bias_initializer": {"class_name": "Zeros", "config": {}}, "units": 3, "use_bias": true, "activity_regularizer": null}}], "backend": "tensorflow"} $MAD$, $1, $__madlib__$ loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] $__madlib__$, __table__.__dist_key__, ARRAY[1, 0], __table__.gp_segment_id, ARRAY[2, 2], ARRAY[60, 60], ARRAY[0, 0], True, $2 )) as loss_metric from iris_train_packed AS __table__ CONTEXT: PL/Python function "madlib_keras_fit" INFO: Time for training in iteration 10: 0.101819038391 sec DETAIL: Time for evaluating training dataset in iteration 10: 0.0550060272217 sec Training set metric after iteration 10: 0.458333343267 Training set loss after iteration 10: 0.788652122021 CONTEXT: PL/Python function "madlib_keras_fit" madlib_keras_fit ------------------ (1 row) ``` ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org