[
https://issues.apache.org/jira/browse/MAHOUT-375?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12873548#action_12873548
]
Robin Anil commented on MAHOUT-375:
-----------------------------------
And yes, the code needs to be formatted to conform with the checkstyle :). Its
easier to start with good code style than needing to mass fix the code later.
Its as easy as importing the Eclipse formatter(available on the wiki) in
Eclipse and Ctrl+Shift+F . Also you can run mvn checkstyle:checkstyle to check
the code for any flaws. But don't get hung up on removing all errors, just make
sure its 90-95% ok.
> [GSOC] Restricted Boltzmann Machines in Apache Mahout
> -----------------------------------------------------
>
> Key: MAHOUT-375
> URL: https://issues.apache.org/jira/browse/MAHOUT-375
> Project: Mahout
> Issue Type: New Feature
> Reporter: Sisir Koppaka
> Attachments: MAHOUT-375.diff, MAHOUT-375.patch
>
>
> Proposal Title: Restricted Boltzmann Machines in Apache Mahout (addresses
> issue Mahout-329)
> Student Name: Sisir Koppaka
> Student E-mail: [email protected]
> Organization/Project:Assigned Mentor:
> Abstract
> This is a proposal to implement Restricted Boltzmann Machines in Apache
> Mahout as a part of Google Summer of Code 2010. The demo for the code would
> be built on the Netflix dataset.
> 1 Introduction
> The Grand Prize solution to the Netflix Prize offered several new lessons in
> the application of traditional machine learning techniques to very large
> scale datasets. The most significant among these were the impact of temporal
> models, the remarkable contribution of RBM's to the solution in the overall
> model, and the great success in applying ensemble models to achieve superior
> predictions. The present proposal seeks to implement a conditional factored
> RBM[4] in Apache Mahout as a project under Google Summer of Code 2010.
> 2 Background
> The Netflix dataset takes the form of a sparse matrix of a N X M ratings that
> N users assign to M movies. Matrix decompositions such as variants of
> Singular Value Decompositions(SVDs) form the first type of methods applied.
> This has also induced several recent works in applied mathematics relevant to
> the Netflix Prize, including [1, 2]. Another genre of techniques have been
> k-nearest neighbour approaches - user-user, movie-movie and using different
> distance measures such as Pearson and Cosine. The third set of techniques
> that offers arguably the most divergent predictions that aid in the increase
> in prediction RMSE are RBM and it's variants.
> [4] demonstrates the algorithm that the author proposes to implement this
> summer in Apache Mahout. Parallelization can be done by updating all the
> hidden units, followed by the visible units in parallel, due to the
> conditional independence of the hidden units, given a visible binary
> indicator matrix. Rather than implementing a naive RBM, the conditional
> factored RBM is chosen due to it's useful combination of effectiveness and
> speed. Minor variations, in any case, could be developed later with little
> difficulty.
> The training data set consists of nearly 100 million ratings from 480,000
> users on 17,770 movie titles. As part of the training data, Netflix also pro-
> vides validation data(called the probe set), containing nearly 1.4 million
> rat- ings. In addition to the training and validation data, Netflix also
> provides a test set containing 2.8 million user/movie pairs(called the
> qualifying set) whose ratings were previously withheld, but have now been
> released post the conclusion of the Prize.
> 3 Milestones
> 3.1 April 26-May 24
> Community Bonding Period Certain boilerplate code for the Netflix dataset
> exists at org.apache.mahout.cf.taste.example.netflix. However, this code is
> non-distributed and is unrelated to Hadoop. Certain parts of this code, like
> the file read-in based on Netflix format will be reused to match the
> processed Netflix dataset file linked below.
> Test out any of the already-implemented Mahout algorithms like SVD or k-Means
> on the whole dataset to make sure that everything works as ad- vertised. Make
> a note of testing time. If testing time is very large, then make a 10%
> training set, and use the 10% probe, which already exists as a standardized
> Netflix Prize community contribution. This is only so that iterations can be
> faster/a multiple node Hadoop installation need not al- ways be required.
> Work on the map-reduce version of RBM and evaluate if parallelization beyond
> the hidden units and visible units alternate computa- tion can be
> implemented. Get the community's approval for the map-reduce version of RBM,
> and then proceed.
> 3.2 May 24-July 12 Pre-midterm
> Implementation time! Write code, test code, rewrite code.
> Should have working code with decent predictions by end of this segment.
> Design details
> The RBM code would live at org.apache.mahout.classifier.rbm. Classify.java
> would need to be written to support the RBM similar to that in
> discriminative. An equivalent of BayesFileFormatter.java would not be
> required because of the pre-written Netflix read-in code as mentioned above.
> ConfusionMatrix.java, ResultAnalyzer.java and ClassifyResult.java would be
> reused as-is from discriminative.
> algorithm would contain the actual conditional factored RBM algorithm. common
> would contain the relevant code common to various files in algo- rithm.
> mapreduce.rbm would contain the driver, mapper and reducer for the
> parallelized updating of the hidden units layer, followed by the visible
> units, and appropriate refactored code would be placed in mapreduce.common.
> The algorithm would be implemented generically, and the demo would be on the
> Netflix dataset.
> 3.3 July 12-July 31 Post-midterm
> If testing was on the 10% set, run multiple times on the whole dataset and
> ensure results match. Test a two-method ensemble of SVD(already in Mahout)
> and RBM and confirm that RBM offers a unique perpendicular dimensionality to
> the problem. Make sure unit tests are all in.
> Test on Netflix dataset linked above and prepare for demo.
> 3.4 July 31-August 16 Pencils down
> Refactor, tune and clean code. Final demo done. Write documentation and add a
> wiki page.
> 4 About Myself
> Im a 19-year old student hailing from the beautiful, sea-hugging, coastal
> city of Visakhapatnam in Andhra Pradesh, South India. In 2006, I was one of
> the only 110 students in the country to be awarded a scholarship from the
> Indian Institute of Science and the Department of Science and Technology,
> Government of India, under the KVPY programme and I attended their summer
> camp that year.
> I interned in the Prediction Algorithms Lab at GE Research, Bangalore, last
> summer. I worked on custom-toolkit in C++ that implemented various Netflix
> algorithms and operated using data parallelization for some of the more
> lenghty algorithms like user-user kNN. Our team stood at rank 409 at the end
> of the two-month internship, when the Grand Prize was awarded.
> I have also published independent work in GECCO 2010[3]. GECCO is ACM
> SIGEVO's annual conference, and is ranked 11th out of 701 interna- tional
> conferences in AI, ML, Robotics, and HCI based on it's impact factor.
> I have also contributed code to FFmpeg, and was part of my Hall of
> Residence's award-winning Java-based Open Soft project team that we have now
> open sourced. I am also an avid quizzer and have won several prestigious
> quizzes during my schooling days. I also got the 4th rank in the regional
> qualifications for the Indian National Mathematics Olympiad.
> References
> [1] E. J. Candes and T. Tao. The Power of Convex Relaxation: Near-Optimal
> Matrix Completion. Arxiv, 2009.
> [2] R. H. Keshavan, A. Montanari, and S. Oh. Matrix Completion from Noisy
> Entries. Arxiv, 2009.
> [3] S. Koppaka and A. R. Hota. Superior Exploration-Exploitation Balance with
> Quantum-Inspired Hadamard Walks. Proceedings of the 12th Annual Conference on
> Genetic and Evolutionary computation - GECCO '10 to appear, 2010.
> [4] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann Machines
> for Collaborative Filtering. Proceedings of the 24th International Conference
> on Machine Learning, Corvallis, OR,2007, 6, 2007.
> Open Source Java Project - http://blunet.googlecode.com
> FFmpeg patches
> http://git.ffmpeg.org/?p=ffmpeg;a=commitdiff;h=16a043535b91595bf34d7e044ef398067e7443e0
> http://git.ffmpeg.org/?p=ffmpeg;a=commitdiff;h=9dde37a150ce2e5c53e2295d09efe289cebea9cd
--
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.