[ 
https://issues.apache.org/jira/browse/MAHOUT-542?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12979265#action_12979265
 ] 

Lance Norskog commented on MAHOUT-542:
--------------------------------------

bq. the factorization needs a regularization parameter called lambda, which 
heavily influences the quality of the result.

If you distribute the matrix portions, and run the lambda calculator in each 
job separately, how closely do they match? If they correlate well, would it 
work to have a bunch of similar lambdas?

> MapReduce implementation of ALS-WR
> ----------------------------------
>
>                 Key: MAHOUT-542
>                 URL: https://issues.apache.org/jira/browse/MAHOUT-542
>             Project: Mahout
>          Issue Type: New Feature
>          Components: Collaborative Filtering
>    Affects Versions: 0.5
>            Reporter: Sebastian Schelter
>         Attachments: MAHOUT-452.patch, MAHOUT-542-2.patch, MAHOUT-542-3.patch
>
>
> As Mahout is currently lacking a distributed collaborative filtering 
> algorithm that uses matrix factorization, I spent some time reading through a 
> couple of the Netflix papers and stumbled upon the "Large-scale Parallel 
> Collaborative Filtering for the Netflix Prize" available at 
> http://www.hpl.hp.com/personal/Robert_Schreiber/papers/2008%20AAIM%20Netflix/netflix_aaim08(submitted).pdf.
> It describes a parallel algorithm that uses "Alternating-Least-Squares with 
> Weighted-λ-Regularization" to factorize the preference-matrix and gives some 
> insights on how the authors distributed the computation using Matlab.
> It seemed to me that this approach could also easily be parallelized using 
> Map/Reduce, so I sat down and created a prototype version. I'm not really 
> sure I got the mathematical details correct (they need some optimization 
> anyway), but I wanna put up my prototype implementation here per Yonik's law 
> of patches.
> Maybe someone has the time and motivation to work a little on this with me. 
> It would be great if someone could validate the approach taken (I'm willing 
> to help as the code might not be intuitive to read) and could try to 
> factorize some test data and give feedback then.

-- 
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply via email to