[ 
https://issues.apache.org/jira/browse/MAHOUT-232?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12999567#comment-12999567
 ] 

Ted Dunning commented on MAHOUT-232:
------------------------------------

Great to see somebody picking this up.

The place that I expect to see problems are any use of the legacy math classes. 
 Look for deprecations.

Also, can you check to see if your use case is better served by SGD models 
rather than SVM's?  That question has come up several times and I can only say 
something about the SGD side of the house.

> Implementation of sequential SVM solver based on Pegasos
> --------------------------------------------------------
>
>                 Key: MAHOUT-232
>                 URL: https://issues.apache.org/jira/browse/MAHOUT-232
>             Project: Mahout
>          Issue Type: New Feature
>          Components: Classification
>    Affects Versions: 0.4
>            Reporter: zhao zhendong
>            Assignee: Ted Dunning
>         Attachments: Mahout-232-0.8.patch, SVMDataset.patch, 
> SVMonMahout0.5.1.patch, SVMonMahout0.5.patch, SequentialSVM_0.1.patch, 
> SequentialSVM_0.2.2.patch, SequentialSVM_0.3.patch, SequentialSVM_0.4.patch, 
> a2a.mvc
>
>
> After discussed with guys in this community, I decided to re-implement a 
> Sequential SVM solver based on Pegasos  for Mahout platform (mahout command 
> line style,  SparseMatrix and SparseVector etc.) , Eventually, it will 
> support HDFS. 
> Sequential SVM based on Pegasos.
> Maxim zhao (zhaozhendong at gmail dot com)
> -------------------------------------------------------------------------------------------
> Currently, this package provides (Features):
> -------------------------------------------------------------------------------------------
> 1. Sequential SVM linear solver, include training and testing.
> 2. Support general file system and HDFS right now.
> 3. Supporting large-scale data set training.
> Because of the Pegasos only need to sample certain samples, this package 
> supports to pre-fetch
> the certain size (e.g. max iteration) of samples to memory.
> For example: if the size of data set has 100,000,000 samples, due to the 
> default maximum iteration is 10,000,
> as the result, this package only random load 10,000 samples to memory.
> 4. Sequential Data set testing, then the package can support large-scale data 
> set both on training and testing.
> 5. Supporting parallel classification (only testing phrase) based on 
> Map-Reduce framework.
> 6. Supoorting Multi-classfication based on Map-Reduce framework (whole 
> parallelized version).
> 7. Supporting Regression.
> -------------------------------------------------------------------------------------------
> TODO:
> -------------------------------------------------------------------------------------------
> 1. Multi-classification Probability Prediction
> 2. Performance Testing
> -------------------------------------------------------------------------------------------
> Usage:
> -------------------------------------------------------------------------------------------
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> Classification:
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> @@ Training: @@
> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> SVMPegasosTraining.java
> The default argument is:
> -tr ../examples/src/test/resources/svmdataset/train.dat -m 
> ../examples/src/test/resources/svmdataset/SVM.model
> ~~~~~~~~~~~~~~~~~~~~~~
> @ For the case that training data set on HDFS:@
> ~~~~~~~~~~~~~~~~~~~~~~
> 1 Assure that your training data set has been submitted to hdfs
> hadoop-work-space# bin/hadoop fs -ls path-of-train-dataset
> 2 revise the argument:
> -tr /user/hadoop/train.dat -m 
> ../examples/src/test/resources/svmdataset/SVM.model -hdfs 
> hdfs://localhost:12009
> ~~~~~~~~~~~~~~~~~~~~~~
> @ Multi-class Training [Based on MapReduce Framework]:@
> ~~~~~~~~~~~~~~~~~~~~~~
> bin/hadoop jar mahout-core-0.3-SNAPSHOT.job 
> org.apache.mahout.classifier.svm.ParallelAlgorithms.ParallelMultiClassifierTrainDriver
>  -if /user/maximzhao/dataset/protein -of /user/maximzhao/protein -m 
> /user/maximzhao/proteinmodel -s 1000000 -c 3 -nor 3 -ms 923179 -mhs -Xmx1000M 
> -ttt 1080
> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> @@ Testing: @@
> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
> SVMPegasosTesting.java
> I have hard coded the arguments in this file, if you want to custom the 
> arguments by youself, please uncomment the first line in main function.
> The default argument is:
> -te ../examples/src/test/resources/svmdataset/test.dat -m 
> ../examples/src/test/resources/svmdataset/SVM.model
> ~~~~~~~~~~~~~~~~~~~~~~
> @ Parallel Testing (Classification): @
> ~~~~~~~~~~~~~~~~~~~~~~
> ParallelClassifierDriver.java
> bin/hadoop jar mahout-core-0.3-SNAPSHOT.job 
> org.apache.mahout.classifier.svm.ParallelAlgorithms.ParallelClassifierDriver 
> -if /user/maximzhao/dataset/rcv1_test.binary -of /user/maximzhao/rcv.result 
> -m /user/maximzhao/rcv1.model -nor 1 -ms 241572968 -mhs -Xmx500M -ttt 1080
> ~~~~~~~~~~~~~~~~~~~~~~
> @ Parallel multi-classification: @
> ~~~~~~~~~~~~~~~~~~~~~~
> bin/hadoop jar mahout-core-0.3-SNAPSHOT.job 
> org.apache.mahout.classifier.svm.ParallelAlgorithms.ParallelMultiClassPredictionDriver
>  -if /user/maximzhao/dataset/protein.t -of 
> /user/maximzhao/proteinpredictionResult -m /user/maximzhao/proteinmodel -c 3 
> -nor 1 -ms 2226917 -mhs -Xmx1000M -ttt 1080
> Note: the parameter -ms 241572968 is obtained by equation : ms = input files 
> size / number of mapper.
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> Regression: 
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> SVMPegasosTraining.java
> -tr ../examples/src/test/resources/svmdataset/abalone_scale -m 
> ../examples/src/test/resources/svmdataset/SVMregression.model -s 1
> -------------------------------------------------------------------------------------------
> Experimental Results:
> -------------------------------------------------------------------------------------------
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> Classsification:
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> Data set:
> name            source            type        class   training size   testing 
> size    feature
> -----------------------------------------------------------------------------------------------
> rcv1.binary    [DL04b]        classification  2          20,242         
> 677,399       47,236
> covtype.binary          UCI           classification  2         581,012       
>                  54
> a9a               UCI           classification        2          32,561       
>    16,281       123
> w8a            [JP98a]        classification  2          49,749          
> 14,951       300
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> Data set                 |        Accuracy         |       Training Time      
> |    Testing Time     |
> rcv1.binary              |          94.67%         |         19 Sec           
> |     2 min 25 Sec    |
> covtype.binary           |                         |         19 Sec           
> |                     |
> a9a                      |          84.72%         |         14 Sec           
> |     12 Sec          |
> w8a                      |          89.8 %         |         14 Sec           
> |     8  Sec          |
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> Parallel Classification (Testing)
> Data set                 |        Accuracy         |       Training Time      
> |    Testing Time            |
> rcv1.binary              |          94.98%         |         19 Sec           
> |     3 min 29 Sec (one node)|
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> Parallel Multi-classification Based on MapReduce Framework:
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> Data set:
> name    |        source           | type      | class | training size | 
> testing size  | feature
> -----------------------------------------------------------------------------------------------
> poker | UCI   | classification        | 10    | 25,010        | 1,000,000     
> | 10
> protein        | [JYW02a]     | classification        | 3     | 17,766        
> | 6,621 | 357
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> Data set                 |        Accuracy  vs. (Libsvm with linear kernel)
> poker | 50.14 %  vs. ( 49.952% ) |
> protein | 68.14% vs. ( 64.93% ) |
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> Regression:
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> Data set:
> name  |          source       |    type |     class   | training size |       
> testing size |  feature
> -----------------------------------------------------------------------------------------------
> abalone |     UCI     | regression            | 4,177         | | 8
> triazines |   UCI     | regression            | 186           | | 60
> cadata        | StatLib       | regression            | 20,640        | | 8
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
> Data set                 |        Mean Squared error vs. (Libsvm with linear 
> kernel)   |       Training Time      | Test Time |
> abalone | 6.01 vs. (5.25) | 13 Sec |
> triazines | 0.031  vs. (0.0276) | 14 Sec |
> cadata | 5.61 e +10 vs. (1.40 e+10) | 20 Sec |

-- 
This message is automatically generated by JIRA.
-
For more information on JIRA, see: http://www.atlassian.com/software/jira

        

Reply via email to