[ 
https://issues.apache.org/jira/browse/MAHOUT-734?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Sergey Bartunov updated MAHOUT-734:
-----------------------------------

    Status: Open  (was: Patch Available)

>From 7be42824a0767d4208b9dcd7da49beee06ff15ee Mon Sep 17 00:00:00 2001
From: Sergey Bartunov <[email protected]>
Date: Wed, 15 Jun 2011 01:04:39 +0400
Subject: [PATCH 3/5] command-line util for baum-welch algorithm on HMM

---
 .../sequencelearning/hmm/BaumWelchTrainer.java     |  127 ++++++++++++++++++++
 .../sequencelearning/hmm/LossyHmmSerializer.java   |   57 +++++++++
 src/conf/driver.classes.props                      |    3 +-
 3 files changed, 186 insertions(+), 1 deletions(-)
 create mode 100644 
core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/BaumWelchTrainer.java
 create mode 100644 
core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/LossyHmmSerializer.java

diff --git 
a/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/BaumWelchTrainer.java
 
b/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/BaumWelchTrainer.java
new file mode 100644
index 0000000..410fcad
--- /dev/null
+++ 
b/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/BaumWelchTrainer.java
@@ -0,0 +1,127 @@
+/**
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.mahout.classifier.sequencelearning.hmm;
+
+import org.apache.commons.cli2.CommandLine;
+import org.apache.commons.cli2.Group;
+import org.apache.commons.cli2.Option;
+import org.apache.commons.cli2.OptionException;
+import org.apache.commons.cli2.builder.ArgumentBuilder;
+import org.apache.commons.cli2.builder.DefaultOptionBuilder;
+import org.apache.commons.cli2.builder.GroupBuilder;
+import org.apache.commons.cli2.commandline.Parser;
+import org.apache.mahout.common.CommandLineUtil;
+
+import java.io.DataOutputStream;
+import java.io.FileInputStream;
+import java.io.FileOutputStream;
+import java.io.IOException;
+import java.util.ArrayList;
+import java.util.Date;
+import java.util.List;
+import java.util.Scanner;
+
+/**
+ * A class for EM training of HMM from console
+ */
+public class BaumWelchTrainer {
+  public static void main(String[] args) throws IOException {
+    final DefaultOptionBuilder optionBuilder = new DefaultOptionBuilder();
+    final ArgumentBuilder argumentBuilder = new ArgumentBuilder();
+
+    final Option inputOption = optionBuilder.withLongName("input").
+      withDescription("Text file with space-separated integers to train on").
+      
withShortName("i").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
+      withName("path").create()).withRequired(true).create();
+
+    final Option outputOption = optionBuilder.withLongName("output").
+      withDescription("Path trained HMM model should be serialized to").
+      
withShortName("o").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
+      withName("path").create()).withRequired(true).create();
+
+    final Option stateNumberOption = 
optionBuilder.withLongName("nrOfHiddenStates").
+      withDescription("Number of hidden states").
+      
withShortName("nh").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
+      withName("number").create()).withRequired(true).create();
+
+    final Option observedStateNumberOption = 
optionBuilder.withLongName("nrOfObservedStates").
+      withDescription("Number of observed states").
+      
withShortName("no").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
+      withName("number").create()).withRequired(true).create();
+
+    final Option epsilonOption = optionBuilder.withLongName("epsilon").
+      withDescription("Convergence threshold").
+      
withShortName("e").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
+      withName("number").create()).withRequired(true).create();
+
+    final Option iterationsOption = 
optionBuilder.withLongName("max-iterations").
+      withDescription("Maximum iterations number").
+      
withShortName("m").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
+      withName("number").create()).withRequired(true).create();
+
+    final Group optionGroup = new GroupBuilder().withOption(inputOption).
+      
withOption(outputOption).withOption(stateNumberOption).withOption(observedStateNumberOption).
+      withOption(epsilonOption).withOption(iterationsOption).
+      withName("Options").create();
+
+    try {
+      final Parser parser = new Parser();
+      parser.setGroup(optionGroup);
+      final CommandLine commandLine = parser.parse(args);
+
+      final String input = (String) commandLine.getValue(inputOption);
+      final String output = (String) commandLine.getValue(outputOption);
+
+      final int nrOfHiddenStates = Integer.parseInt((String) 
commandLine.getValue(stateNumberOption));
+      final int nrOfObservedStates = Integer.parseInt((String) 
commandLine.getValue(observedStateNumberOption));
+
+      final double epsilon = Double.parseDouble((String) 
commandLine.getValue(epsilonOption));
+      final int maxIterations = Integer.parseInt((String) 
commandLine.getValue(iterationsOption));
+
+      //constructing random-generated HMM
+      final HmmModel model = new HmmModel(nrOfHiddenStates, 
nrOfObservedStates, new Date().getTime());
+      final List<Integer> observations = new ArrayList<Integer>();
+
+      //reading observations
+      final FileInputStream inputStream = new FileInputStream(input);
+      final Scanner scanner = new Scanner(inputStream);
+
+      while (scanner.hasNextInt()) {
+        observations.add(scanner.nextInt());
+      }
+
+      scanner.close();
+      inputStream.close();
+
+      final int[] observationsArray = new int[observations.size()];
+      for (int i = 0; i < observations.size(); ++i)
+        observationsArray[i] = observations.get(i);
+
+      //training
+      final HmmModel trainedModel = HmmTrainer.trainBaumWelch(model,
+        observationsArray, epsilon, maxIterations, true);
+
+      //serializing trained model
+      final DataOutputStream stream  = new DataOutputStream(new 
FileOutputStream(output));
+      LossyHmmSerializer.serialize(trainedModel, stream);
+      stream.close();
+    } catch (OptionException e) {
+      CommandLineUtil.printHelp(optionGroup);
+    }
+  }
+}
diff --git 
a/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/LossyHmmSerializer.java
 
b/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/LossyHmmSerializer.java
new file mode 100644
index 0000000..8bbb814
--- /dev/null
+++ 
b/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/LossyHmmSerializer.java
@@ -0,0 +1,57 @@
+/**
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.mahout.classifier.sequencelearning.hmm;
+
+import org.apache.mahout.math.Matrix;
+import org.apache.mahout.math.MatrixWritable;
+import org.apache.mahout.math.Vector;
+import org.apache.mahout.math.VectorWritable;
+
+import java.io.DataInput;
+import java.io.DataOutput;
+import java.io.IOException;
+
+/**
+ * Utils for serializing Writable parts of HmmModel (that means without hidden 
state names and so on)
+ */
+public class LossyHmmSerializer {
+  public static void serialize(HmmModel model, DataOutput output) throws 
IOException {
+    final MatrixWritable matrix = new 
MatrixWritable(model.getEmissionMatrix());
+    matrix.write(output);
+    matrix.set(model.getTransitionMatrix());
+    matrix.write(output);
+
+    final VectorWritable vector = new 
VectorWritable(model.getInitialProbabilities());
+    vector.write(output);
+  }
+
+  public static HmmModel deserialize(DataInput input) throws IOException {
+    final MatrixWritable matrix = new MatrixWritable();
+    matrix.readFields(input);
+    final Matrix emissionMatrix = matrix.get();
+
+    matrix.readFields(input);
+    final Matrix transitionMatrix = matrix.get();
+
+    final VectorWritable vector = new VectorWritable();
+    vector.readFields(input);
+    final Vector initialProbabilities = vector.get();
+
+    return new HmmModel(transitionMatrix, emissionMatrix, 
initialProbabilities);
+  }
+}
\ No newline at end of file
diff --git a/src/conf/driver.classes.props b/src/conf/driver.classes.props
index ed72253..cc29fd3 100644
--- a/src/conf/driver.classes.props
+++ b/src/conf/driver.classes.props
@@ -37,4 +37,5 @@ org.apache.mahout.math.hadoop.stochasticsvd.SSVDCli = ssvd : 
Stochastic SVD
 org.apache.mahout.clustering.spectral.eigencuts.EigencutsDriver = eigencuts : 
Eigencuts spectral clustering
 org.apache.mahout.clustering.spectral.kmeans.SpectralKMeansDriver = 
spectralkmeans : Spectral k-means clustering 
 org.apache.mahout.cf.taste.hadoop.als.ParallelALSFactorizationJob = 
parallelALS : ALS-WR factorization of a rating matrix
-org.apache.mahout.cf.taste.hadoop.als.PredictionJob = predictFromFactorization 
: predict preferences from a factorization of a rating matrix
\ No newline at end of file
+org.apache.mahout.cf.taste.hadoop.als.PredictionJob = predictFromFactorization 
: predict preferences from a factorization of a rating matrix
+org.apache.mahout.classifier.sequencelearning.hmm.BaumWelchTrainer = baumwelch 
: Baum-Welch algorithm for unsupervised HMM training
-- 
1.7.1

>From 0d5ef688fbc272fa2fc23d7fee4e03766c168b89 Mon Sep 17 00:00:00 2001
From: Sergey Bartunov <[email protected]>
Date: Wed, 15 Jun 2011 01:25:42 +0400
Subject: [PATCH 4/5] Command line tool for Viterbi evaluation

---
 .../sequencelearning/hmm/ViterbiEvaluator.java     |  119 ++++++++++++++++++++
 src/conf/driver.classes.props                      |    1 +
 2 files changed, 120 insertions(+), 0 deletions(-)
 create mode 100644 
core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/ViterbiEvaluator.java

diff --git 
a/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/ViterbiEvaluator.java
 
b/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/ViterbiEvaluator.java
new file mode 100644
index 0000000..22c5f44
--- /dev/null
+++ 
b/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/ViterbiEvaluator.java
@@ -0,0 +1,119 @@
+/**
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.mahout.classifier.sequencelearning.hmm;
+
+import org.apache.commons.cli2.CommandLine;
+import org.apache.commons.cli2.Group;
+import org.apache.commons.cli2.Option;
+import org.apache.commons.cli2.OptionException;
+import org.apache.commons.cli2.builder.ArgumentBuilder;
+import org.apache.commons.cli2.builder.DefaultOptionBuilder;
+import org.apache.commons.cli2.builder.GroupBuilder;
+import org.apache.commons.cli2.commandline.Parser;
+import org.apache.mahout.common.CommandLineUtil;
+
+import java.io.*;
+import java.util.ArrayList;
+import java.util.List;
+import java.util.Scanner;
+
+/**
+ * Command-line tool for Viterbi evaluating
+ */
+public class ViterbiEvaluator {
+  public static void main(String[] args) throws IOException {
+    final DefaultOptionBuilder optionBuilder = new DefaultOptionBuilder();
+    final ArgumentBuilder argumentBuilder = new ArgumentBuilder();
+
+    final Option inputOption = optionBuilder.withLongName("input").
+      withDescription("Text file with space-separated integers to segment").
+      
withShortName("i").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
+      withName("path").create()).withRequired(true).create();
+
+    final Option outputOption = optionBuilder.withLongName("output").
+      withDescription("Output directory with decoded sequence of hidden 
states").
+      
withShortName("o").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
+      withName("path").create()).withRequired(true).create();
+
+    final Option modelOption = optionBuilder.withLongName("model").
+      withDescription("Path to serialized HMM model").
+      
withShortName("m").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
+      withName("path").create()).withRequired(true).create();
+
+    final Option likelihoodOption = optionBuilder.withLongName("likelihood").
+      withDescription("Compute likelihood of observed sequence").
+      withShortName("l").withRequired(false).create();
+
+    final Group optionGroup = new GroupBuilder().withOption(inputOption).
+      
withOption(outputOption).withOption(modelOption).withOption(likelihoodOption).
+      withName("Options").create();
+
+    try {
+      final Parser parser = new Parser();
+      parser.setGroup(optionGroup);
+      final CommandLine commandLine = parser.parse(args);
+
+      final String input = (String) commandLine.getValue(inputOption);
+      final String output = (String) commandLine.getValue(outputOption);
+
+      final String modelPath = (String) commandLine.getValue(modelOption);
+
+      final boolean computeLikelihood = 
commandLine.hasOption(likelihoodOption);
+
+      //reading serialized HMM
+      final DataInputStream modelStream = new DataInputStream(new 
FileInputStream(modelPath));
+      final HmmModel model = LossyHmmSerializer.deserialize(modelStream);
+      modelStream.close();
+
+      //reading observations
+      final List<Integer> observations = new ArrayList<Integer>();
+      final FileInputStream inputStream = new FileInputStream(input);
+      final Scanner scanner = new Scanner(inputStream);
+
+      while (scanner.hasNextInt()) {
+        observations.add(scanner.nextInt());
+      }
+
+      scanner.close();
+      inputStream.close();
+
+      final int[] observationsArray = new int[observations.size()];
+      for (int i = 0; i < observations.size(); ++i)
+        observationsArray[i] = observations.get(i);
+
+      //decoding
+      final int[] hiddenStates = HmmEvaluator.decode(model, observationsArray, 
true);
+
+      //writing output
+      final FileOutputStream outputStream = new FileOutputStream(output);
+      final PrintWriter writer = new PrintWriter(outputStream);
+      for (int i = 0; i < hiddenStates.length; ++i) {
+        writer.print(hiddenStates[i]);
+        writer.print(' ');
+      }
+      writer.close();
+      outputStream.close();
+
+      if (computeLikelihood) {
+        System.out.println("Likelihood: " + 
HmmEvaluator.modelLikelihood(model, observationsArray, true));
+      }
+    } catch (OptionException e) {
+      CommandLineUtil.printHelp(optionGroup);
+    }
+  }
+}
diff --git a/src/conf/driver.classes.props b/src/conf/driver.classes.props
index cc29fd3..0ed10ce 100644
--- a/src/conf/driver.classes.props
+++ b/src/conf/driver.classes.props
@@ -39,3 +39,4 @@ 
org.apache.mahout.clustering.spectral.kmeans.SpectralKMeansDriver = spectralkmea
 org.apache.mahout.cf.taste.hadoop.als.ParallelALSFactorizationJob = 
parallelALS : ALS-WR factorization of a rating matrix
 org.apache.mahout.cf.taste.hadoop.als.PredictionJob = predictFromFactorization 
: predict preferences from a factorization of a rating matrix
 org.apache.mahout.classifier.sequencelearning.hmm.BaumWelchTrainer = baumwelch 
: Baum-Welch algorithm for unsupervised HMM training
+org.apache.mahout.classifier.sequencelearning.hmm.ViterbiEvaluator = viterbi : 
Viterbi decoding of hidden states from given output states sequence
-- 
1.7.1

>From bce3ebc6e8f8d575f1fb0e05e6c69e5c9d374c6e Mon Sep 17 00:00:00 2001
From: Sergey Bartunov <[email protected]>
Date: Wed, 15 Jun 2011 01:39:13 +0400
Subject: [PATCH 5/5] Command-line tool for generated random observations with 
given HMM

---
 .../hmm/RandomSequenceGenerator.java               |   93 ++++++++++++++++++++
 .../sequencelearning/hmm/ViterbiEvaluator.java     |    6 +-
 src/conf/driver.classes.props                      |    1 +
 3 files changed, 97 insertions(+), 3 deletions(-)
 create mode 100644 
core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/RandomSequenceGenerator.java

diff --git 
a/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/RandomSequenceGenerator.java
 
b/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/RandomSequenceGenerator.java
new file mode 100644
index 0000000..cb1a5c4
--- /dev/null
+++ 
b/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/RandomSequenceGenerator.java
@@ -0,0 +1,93 @@
+/**
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+package org.apache.mahout.classifier.sequencelearning.hmm;
+
+import org.apache.commons.cli2.CommandLine;
+import org.apache.commons.cli2.Group;
+import org.apache.commons.cli2.Option;
+import org.apache.commons.cli2.OptionException;
+import org.apache.commons.cli2.builder.ArgumentBuilder;
+import org.apache.commons.cli2.builder.DefaultOptionBuilder;
+import org.apache.commons.cli2.builder.GroupBuilder;
+import org.apache.commons.cli2.commandline.Parser;
+import org.apache.mahout.common.CommandLineUtil;
+
+import java.io.*;
+import java.util.Date;
+
+/**
+ * Command-line tool for generating random sequences by given HMM
+ */
+public class RandomSequenceGenerator {
+  public static void main(String[] args) throws IOException {
+    final DefaultOptionBuilder optionBuilder = new DefaultOptionBuilder();
+    final ArgumentBuilder argumentBuilder = new ArgumentBuilder();
+
+    final Option outputOption = optionBuilder.withLongName("output").
+      withDescription("Output file with sequence of observed states").
+      
withShortName("o").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
+      withName("path").create()).withRequired(false).create();
+
+    final Option modelOption = optionBuilder.withLongName("model").
+      withDescription("Path to serialized HMM model").
+      
withShortName("m").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
+      withName("path").create()).withRequired(true).create();
+
+    final Option lengthOption = optionBuilder.withLongName("length").
+      withDescription("Length of generated sequence").
+      
withShortName("l").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
+      withName("number").create()).withRequired(true).create();
+
+    final Group optionGroup = new GroupBuilder().
+      
withOption(outputOption).withOption(modelOption).withOption(lengthOption).
+      withName("Options").create();
+
+    try {
+      final Parser parser = new Parser();
+      parser.setGroup(optionGroup);
+      final CommandLine commandLine = parser.parse(args);
+
+      final String output = (String) commandLine.getValue(outputOption);
+
+      final String modelPath = (String) commandLine.getValue(modelOption);
+
+      final int length = Integer.parseInt((String) 
commandLine.getValue(lengthOption));
+
+      //reading serialized HMM
+      final DataInputStream modelStream = new DataInputStream(new 
FileInputStream(modelPath));
+      final HmmModel model = LossyHmmSerializer.deserialize(modelStream);
+      modelStream.close();
+
+      //generating observations
+      final int[] observations = HmmEvaluator.predict(model, length, new 
Date().getTime());
+
+      //writing output
+      final FileOutputStream outputStream = new FileOutputStream(output);
+      final PrintWriter writer = new PrintWriter(outputStream);
+      for (int observation : observations) {
+        writer.print(observation);
+        writer.print(' ');
+      }
+      writer.close();
+      outputStream.close();
+    } catch (OptionException e) {
+      CommandLineUtil.printHelp(optionGroup);
+    }
+  }
+}
diff --git 
a/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/ViterbiEvaluator.java
 
b/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/ViterbiEvaluator.java
index 22c5f44..bcb6df2 100644
--- 
a/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/ViterbiEvaluator.java
+++ 
b/core/src/main/java/org/apache/mahout/classifier/sequencelearning/hmm/ViterbiEvaluator.java
@@ -46,7 +46,7 @@ public class ViterbiEvaluator {
       withName("path").create()).withRequired(true).create();
 
     final Option outputOption = optionBuilder.withLongName("output").
-      withDescription("Output directory with decoded sequence of hidden 
states").
+      withDescription("Output file with decoded sequence of hidden states").
       
withShortName("o").withArgument(argumentBuilder.withMaximum(1).withMinimum(1).
       withName("path").create()).withRequired(true).create();
 
@@ -102,8 +102,8 @@ public class ViterbiEvaluator {
       //writing output
       final FileOutputStream outputStream = new FileOutputStream(output);
       final PrintWriter writer = new PrintWriter(outputStream);
-      for (int i = 0; i < hiddenStates.length; ++i) {
-        writer.print(hiddenStates[i]);
+      for (int hiddenState : hiddenStates) {
+        writer.print(hiddenState);
         writer.print(' ');
       }
       writer.close();
diff --git a/src/conf/driver.classes.props b/src/conf/driver.classes.props
index 0ed10ce..f975ed7 100644
--- a/src/conf/driver.classes.props
+++ b/src/conf/driver.classes.props
@@ -40,3 +40,4 @@ 
org.apache.mahout.cf.taste.hadoop.als.ParallelALSFactorizationJob = parallelALS
 org.apache.mahout.cf.taste.hadoop.als.PredictionJob = predictFromFactorization 
: predict preferences from a factorization of a rating matrix
 org.apache.mahout.classifier.sequencelearning.hmm.BaumWelchTrainer = baumwelch 
: Baum-Welch algorithm for unsupervised HMM training
 org.apache.mahout.classifier.sequencelearning.hmm.ViterbiEvaluator = viterbi : 
Viterbi decoding of hidden states from given output states sequence
+org.apache.mahout.classifier.sequencelearning.hmm.RandomSequenceGenerator = 
hmmpredict : Generate random sequence of observations by given HMM
-- 
1.7.1


> Command-line utils for HMM
> --------------------------
>
>                 Key: MAHOUT-734
>                 URL: https://issues.apache.org/jira/browse/MAHOUT-734
>             Project: Mahout
>          Issue Type: New Feature
>          Components: Classification
>    Affects Versions: 0.5
>            Reporter: Sergey Bartunov
>            Priority: Minor
>              Labels: hmm
>             Fix For: 0.6
>
>         Attachments: 
> 0003-command-line-util-for-baum-welch-algorithm-on-HMM.patch, 
> 0004-Command-line-tool-for-Viterbi-evaluation.patch, 
> 0005-Command-line-tool-for-generated-random-observations-.patch
>
>
> Mahout already have HMM functionality, but it presents only in API.
> Command-line tools should be added and registered in driver.classes.props
> [this is my "traning" issue in Jira to learn how to commit patches to the 
> Mahout, so please be merficul]

--
This message is automatically generated by JIRA.
For more information on JIRA, see: http://www.atlassian.com/software/jira

        

Reply via email to