[
https://issues.apache.org/jira/browse/MAHOUT-672?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Jonathan Traupman updated MAHOUT-672:
-------------------------------------
Attachment: mahout-672.patch
I removed all the matrix/vector changes and linear operator stuff from this
patch, so this code just implements the conjugate gradient and LSMR solvers
using the 0.5 standard linear algebra stuff.
I'll create a new issue for the linear operators and other linear algebra
refactoring. I'm not sure when I'll have the time to work on it, but I'll try
to implement the suggestions made here.
Since I'd like to get the linear operator stuff out sooner rather than later, I
did not add the code for the A'A and (A + kI) cases back to the CG
implementation. So for now, the CG solver will only work for symmetric pos.
def. matrices.
> Implementation of Conjugate Gradient for solving large linear systems
> ---------------------------------------------------------------------
>
> Key: MAHOUT-672
> URL: https://issues.apache.org/jira/browse/MAHOUT-672
> Project: Mahout
> Issue Type: New Feature
> Components: Math
> Affects Versions: 0.5
> Reporter: Jonathan Traupman
> Priority: Minor
> Fix For: 0.6
>
> Attachments: 0001-MAHOUT-672-LSMR-iterative-linear-solver.patch,
> 0001-MAHOUT-672-LSMR-iterative-linear-solver.patch, MAHOUT-672.patch,
> mahout-672.patch
>
> Original Estimate: 48h
> Remaining Estimate: 48h
>
> This patch contains an implementation of conjugate gradient, an iterative
> algorithm for solving large linear systems. In particular, it is well suited
> for large sparse systems where a traditional QR or Cholesky decomposition is
> infeasible. Conjugate gradient only works for matrices that are square,
> symmetric, and positive definite (basically the same types where Cholesky
> decomposition is applicable). Systems like these commonly occur in statistics
> and machine learning problems (e.g. regression).
> Both a standard (in memory) solver and a distributed hadoop-based solver
> (basically the standard solver run using a DistributedRowMatrix a la
> DistributedLanczosSolver) are included.
> There is already a version of this algorithm in taste package, but it doesn't
> operate on standard mahout matrix/vector objects, nor does it implement a
> distributed version. I believe this implementation will be more generically
> useful to the community than the specialized one in taste.
> This implementation solves the following types of systems:
> Ax = b, where A is square, symmetric, and positive definite
> A'Ax = b where A is arbitrary but A'A is positive definite. Directly solving
> this system is more efficient than computing A'A explicitly then solving.
> (A + lambda * I)x = b and (A'A + lambda * I)x = b, for systems where A or A'A
> is singular and/or not full rank. This occurs commonly if A is large and
> sparse. Solving a system of this form is used, for example, in ridge
> regression.
> In addition to the normal conjugate gradient solver, this implementation also
> handles preconditioning, and has a sample Jacobi preconditioner included as
> an example. More work will be needed to build more advanced preconditioners
> if desired.
--
This message is automatically generated by JIRA.
For more information on JIRA, see: http://www.atlassian.com/software/jira