[
https://issues.apache.org/jira/browse/MAHOUT-817?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=13157933#comment-13157933
]
Dmitriy Lyubimov commented on MAHOUT-817:
-----------------------------------------
I don't think we want to have an explicit step to compile either Y or B means.
We can construct them and even output them in the fly albeit in a blocked form.
But we probably do need A means in the final output to enable back and forward
fold ins of the new items, right?
> Add PCA options to SSVD code
> ----------------------------
>
> Key: MAHOUT-817
> URL: https://issues.apache.org/jira/browse/MAHOUT-817
> Project: Mahout
> Issue Type: New Feature
> Affects Versions: 0.6
> Reporter: Dmitriy Lyubimov
> Assignee: Dmitriy Lyubimov
> Fix For: Backlog
>
>
> It seems that a simple solution should exist to integrate PCA mean
> subtraction into SSVD algorithm without making it a pre-requisite step and
> also avoiding densifying the big input.
> Several approaches were suggested:
> 1) subtract mean off B
> 2) propagate mean vector deeper into algorithm algebraically where the data
> is already collapsed to smaller matrices
> 3) --?
> It needs some math done first . I'll take a stab at 1 and 2 but thoughts and
> math are welcome.
--
This message is automatically generated by JIRA.
If you think it was sent incorrectly, please contact your JIRA administrators:
https://issues.apache.org/jira/secure/ContactAdministrators!default.jspa
For more information on JIRA, see: http://www.atlassian.com/software/jira