[
https://issues.apache.org/jira/browse/MAHOUT-1422?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=13964550#comment-13964550
]
Ted Dunning commented on MAHOUT-1422:
-------------------------------------
{quote}
But how do you interpret a [A_1' A_2] calculated using XRSJ when the column
spaces are different?
{quote}
The transpose makes it so that only the row spaces have to match.
The result has rows from the column space of A_1 and columns as with A_2.
After LLR and other operations, the rows of A_1' A_2 are put onto the items
which represent the column space of A_1.
> Make a version of RSJ that uses two inputs
> ------------------------------------------
>
> Key: MAHOUT-1422
> URL: https://issues.apache.org/jira/browse/MAHOUT-1422
> Project: Mahout
> Issue Type: Improvement
> Components: Collaborative Filtering
> Affects Versions: 1.0
> Environment: mapreduce
> Reporter: Pat Ferrel
> Labels: recommender, similarity
> Fix For: 1.0
>
>
> Currently the RowSimiairtyJob uses a similarity measure to pairwise compare
> all rows in a DistributedRowMatrix.
> For many applications including a cross-action recommender we need something
> like RSJ that takes two DRMs and compares matching rows of each. The output
> would be the same form as RSJ, and ideally would allow the use of any
> similarity type already defined--especially LLR.
> There are two implementations of a Cross-Recommender one based on the Mahout
> RecommenderJob, and another based on Solr, that can immediately benefit from
> a Cross-RSJ.
> A modification of the matrix multiply job may be a place to start since the
> current RSJ seems to rely heavily if self-similarity.
--
This message was sent by Atlassian JIRA
(v6.2#6252)