[ 
https://issues.apache.org/jira/browse/MAHOUT-1615?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14149849#comment-14149849
 ] 

ASF GitHub Bot commented on MAHOUT-1615:
----------------------------------------

Github user dlyubimov commented on a diff in the pull request:

    https://github.com/apache/mahout/pull/52#discussion_r18108922
  
    --- Diff: 
spark/src/main/scala/org/apache/mahout/sparkbindings/SparkEngine.scala ---
    @@ -127,45 +133,64 @@ object SparkEngine extends DistributedEngine {
        */
       def drmFromHDFS (path: String, parMin:Int = 0)(implicit sc: 
DistributedContext): CheckpointedDrm[_] = {
     
    -    val rdd = sc.sequenceFile(path, classOf[Writable], 
classOf[VectorWritable], minPartitions = parMin)
    -        // Get rid of VectorWritable
    -        .map(t => (t._1, t._2.get()))
    +    // HDFS Paramaters
    +    val hConf= new Configuration()
    +    val hPath= new Path(path)
    +    val fs= FileSystem.get(hConf)
     
    -    def getKeyClassTag[K: ClassTag, V](rdd: RDD[(K, V)]) = 
implicitly[ClassTag[K]]
    +    /** Get the Key Class For the Sequence File */
    +    def getKeyClassTag[K:ClassTag] = ClassTag(new SequenceFile.Reader(fs, 
hPath, hConf).getKeyClass)
    +   
    --- End diff --
    
    Can we please squirrel away lines 136-143 and all direct hadoop imports 
into a separate function, separate util helper object please? I am still very 
wary of direct hadoop dependencies and i predict this will not work on _all_ 
CDH /public hadoop releases.


> SparkEngine drmFromHDFS returning the same Key for all Key,Vec Pairs for 
> Text-Keyed SequenceFiles
> -------------------------------------------------------------------------------------------------
>
>                 Key: MAHOUT-1615
>                 URL: https://issues.apache.org/jira/browse/MAHOUT-1615
>             Project: Mahout
>          Issue Type: Bug
>            Reporter: Andrew Palumbo
>             Fix For: 1.0
>
>
> When reading in seq2sparse output from HDFS in the spark-shell of form 
> <Text,VectorWriteable>  SparkEngine's drmFromHDFS method is creating rdds 
> with the same Key for all Pairs:  
> {code}
> mahout> val drmTFIDF= drmFromHDFS( path = 
> "/tmp/mahout-work-andy/20news-test-vectors/part-r-00000")
> {code}
> Has keys:
> {...} 
>     key: /talk.religion.misc/84570
>     key: /talk.religion.misc/84570
>     key: /talk.religion.misc/84570
> {...}
> for the entire set.  This is the last Key in the set.
> The problem can be traced to the first line of drmFromHDFS(...) in 
> SparkEngine.scala: 
> {code}
>  val rdd = sc.sequenceFile(path, classOf[Writable], classOf[VectorWritable], 
> minPartitions = parMin)
>         // Get rid of VectorWritable
>         .map(t => (t._1, t._2.get()))
> {code}
> which gives the same key for all t._1.
>   



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to