[
https://issues.apache.org/jira/browse/MAHOUT-1564?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14391560#comment-14391560
]
Hudson commented on MAHOUT-1564:
--------------------------------
SUCCESS: Integrated in Mahout-Quality #3038 (See
[https://builds.apache.org/job/Mahout-Quality/3038/])
MAHOUT-1564: Naive Bayes Classifier for New Text Documents closes
apache/mahout#91 (apalumbo: rev 441460e77cd38acc684cb2351dad5f0e6156c1f0)
* examples/bin/spark-document-classifier.mscala
* CHANGELOG
> Naive Bayes Classifier for New Text Documents
> ---------------------------------------------
>
> Key: MAHOUT-1564
> URL: https://issues.apache.org/jira/browse/MAHOUT-1564
> Project: Mahout
> Issue Type: Improvement
> Affects Versions: 0.9
> Reporter: Andrew Palumbo
> Assignee: Andrew Palumbo
> Labels: DSL, legacy, scala, spark
> Fix For: 0.10.1, 0.10.0
>
>
> MapReduce and DSL Naive Bayes implementations currently lack the ability to
> classify a new document (outside of the training/holdout corpus). This New
> feature will do the following.
> 1. Vectorize a new text document using the dictionary and document
> frequencies from the training/holdout corpus
> - assume the original corpus was vectorized using `seq2sparse`; step (1)
> will use all of the same parameters.
> 2. Score and label a new document using a previously trained model.
> This effort will need to be done in parallel for MRLegacy and DSL
> implementations. Neither should be too much work.
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)