Github user JonZeolla commented on a diff in the pull request:

    https://github.com/apache/metron/pull/961#discussion_r174653386
  
    --- Diff: metron-platform/metron-enrichment/Performance.md ---
    @@ -0,0 +1,527 @@
    +<!--
    +Licensed to the Apache Software Foundation (ASF) under one
    +or more contributor license agreements.  See the NOTICE file
    +distributed with this work for additional information
    +regarding copyright ownership.  The ASF licenses this file
    +to you under the Apache License, Version 2.0 (the
    +"License"); you may not use this file except in compliance
    +with the License.  You may obtain a copy of the License at
    +
    +    http://www.apache.org/licenses/LICENSE-2.0
    +
    +Unless required by applicable law or agreed to in writing, software
    +distributed under the License is distributed on an "AS IS" BASIS,
    +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    +See the License for the specific language governing permissions and
    +limitations under the License.
    +-->
    +
    +# Enrichment Performance
    +
    +This guide defines a set of benchmarks used to measure the performance of 
the Enrichment topology.  The guide also provides detailed steps on how to 
execute those benchmarks along with advice for tuning the Unified Enrichment 
topology.
    +
    +* [Benchmarks](#benchmarks)
    +* [Benchmark Execution](#benchmark-execution)
    +* [Performance Tuning](#performance-tuning)
    +* [Benchmark Results](#benchmark-results)
    +
    +## Benchmarks
    +
    +The following section describes a set of enrichments that will be used to 
benchmark the performance of the Enrichment topology.
    +
    +* [Geo IP Enrichment](#geo-ip-enrichment)
    +* [HBase Enrichment](#hbase-enrichment)
    +* [Stellar Enrichment](#stellar-enrichment)
    +
    +### Geo IP Enrichment
    +
    +This benchmark measures the performance of executing a Geo IP enrichment.  
Given a valid IP address the enrichment will append detailed location 
information for that IP.  The location information is sourced from an external 
Geo IP data source like [Maxmind](https://github.com/maxmind/GeoIP2-java).
    +
    +#### Configuration
    +
    +Adding the following Stellar expression to the Enrichment topology 
configuration will define a Geo IP enrichment.
    +```
    +geo := GEO_GET(ip_dst_addr)
    +```
    +
    +After the enrichment process completes, the  telemetry message will 
contain a set of fields with location information for the given IP address.
    +```
    +{
    +   "ip_dst_addr":"151.101.129.140",
    +   ...
    +   "geo.city":"San Francisco",
    +   "geo.country":"US",
    +   "geo.dmaCode":"807",
    +   "geo.latitude":"37.7697",
    +   "geo.location_point":"37.7697,-122.3933",
    +   "geo.locID":"5391959",
    +   "geo.longitude":"-122.3933",
    +   "geo.postalCode":"94107",
    + }
    +```
    +
    +### HBase Enrichment
    +
    +This benchmark measures the performance of executing an enrichment that 
retrieves data from an external HBase table. This type of enrichment is useful 
for enriching telemetry from an Asset Database or other source of relatively 
static data.
    +
    +#### Configuration
    +
    +Adding the following Stellar expression to the Enrichment topology 
configuration will define an Hbase enrichment.  This looks up the 'ip_dst_addr' 
within an HBase table 'top-1m' and returns a hostname.
    +```
    +top1m := ENRICHMENT_GET('top-1m', ip_dst_addr, 'top-1m', 't')
    +```
    +
    +After the telemetry has been enriched, it will contain the host and IP 
elements that were retrieved from the HBase table.
    +```
    +{
    +   "ip_dst_addr":"151.101.2.166",
    +   ...
    +   "top1m.host":"earther.com",
    +   "top1m.ip":"151.101.2.166"
    +}
    +```
    +
    +### Stellar Enrichment
    +
    +This benchmark measures the performance of executing a basic Stellar 
expression.  In this benchmark, the enrichment is purely a computational task 
that has no dependence on an external system like a database.  
    +
    +#### Configuration
    +
    +Adding the following Stellar expression to the Enrichment topology 
configuration will define a basic Stellar enrichment.  The following returns 
true if the IP is in the given subnet and false otherwise.
    +```
    +local := IN_SUBNET(ip_dst_addr, '192.168.0.0/24')
    +```
    +
    +After the telemetry has been enriched, it will contain a field with a 
boolean value indicating whether the IP was within the given subnet.
    +```
    +{
    +   "ip_dst_addr":"151.101.2.166",
    +   ...
    +   "local":false
    +}
    +```
    +
    +## Benchmark Execution
    +
    +This section describes the steps necessary to execute the performance 
benchmarks for the Enrichment topology.
    +
    +* [Prepare Enrichment Data](#prepare-enrichment-data)
    +* [Load HBase with Enrichment Data](#load-hbase-with-enrichment-data)
    +* [Configure the Enrichments](#configure-the-enrichments)
    +* [Create Input Telemetry](#create-input-telemetry)
    +* [Cluster Setup](#cluster-setup)
    +* [Monitoring](#monitoring)
    +
    +### Prepare Enrichment Data
    +
    +The Alexa Top 1 Million was used as an data source for these benchmarks.
    +
    +1. Download the [Alexa Top 1 
Million](http://s3.amazonaws.com/alexa-static/top-1m.csv.zip).
    +
    +2. For each hostname, query DNS to retrieve an associated IP address.  
    +
    +   A script like the following can be used for this.  There is no need to 
do this for all 1 million entries in the data set. Doing this for around 10,000 
records is sufficient.
    +
    +   ```python
    +   import dns.resolver
    +   import csv
    +
    +   resolver = dns.resolver.Resolver()
    +   resolver.nameservers = ['8.8.8.8', '8.8.4.4']
    +
    +   with open('top-1m.csv', 'r') as infile:
    +     with open('top-1m-with-ip.csv', 'w') as outfile:
    +
    +       reader = csv.reader(infile, delimiter=',')
    +       writer = csv.writer(outfile, delimiter=',')
    +       for row in reader:
    +
    +         host = row[1]
    +         try:
    +           response = resolver.query(host, "A")
    +           for record in response:
    +             ip = record
    +             writer.writerow([host, ip])
    +             print "host={}, ip={}".format(host, ip)
    +
    +         except:
    +           pass
    +   ```
    +
    +3. The resulting data set contains an IP to hostname mapping.
    +   ```bash
    +   $ head top-1m-with-ip.csv
    +   google.com,172.217.9.46
    +   youtube.com,172.217.4.78
    +   facebook.com,157.240.18.35
    +   baidu.com,220.181.57.216
    +   baidu.com,111.13.101.208
    +   baidu.com,123.125.114.144
    +   wikipedia.org,208.80.154.224
    +   yahoo.com,98.139.180.180
    +   yahoo.com,206.190.39.42
    +   reddit.com,151.101.1.140
    +   ```
    +
    +### Load HBase with Enrichment Data
    +
    +1. Create an HBase table for this data.  
    +
    +   Ensure that the table is evenly distributed across the HBase nodes.  
This can be done by pre-splitting the table or splitting the data after loading 
it.  
    +
    +   ```
    +   create 'top-1m', 't', {SPLITS => ['2','4','6','8','a','c','e']}
    +   ```
    +
    +1. Create a configuration file called `extractor.json`.  This defines how 
the data will be loaded into the HBase table.
    +
    +   ```bash
    +   > cat extractor.json
    +   {
    +       "config": {
    +           "columns": {
    +               "host" : 0,
    +               "ip": 1
    +           },
    +           "indicator_column": "ip",
    +           "type": "top-1m",
    +           "separator": ","
    +       },
    +       "extractor": "CSV"
    +   }
    +   ```
    +
    +1. Use the `flatfile_loader.sh` to load the data into the HBase table.
    +   ```
    +   $METRON_HOME/bin/flatfile_loader.sh \
    +           -e extractor.json \
    +           -t top-1m \
    +           -c t \
    +           -i top-1m-with-ip.csv
    +   ```
    +
    +### Configure the Enrichments
    +
    +1. Define the Enrichments using the REPL.
    +
    +   ```
    +   > $METRON_HOME/bin/stellar -z $ZOOKEEPER
    +   Stellar, Go!
    +
    +   [Stellar]>>> conf
    +   {
    +     "enrichment": {
    +       "fieldMap": {
    +        "stellar" : {
    +          "config" : {
    +            "geo" : "GEO_GET(ip_dst_addr)",
    +            "top1m" : "ENRICHMENT_GET('top-1m', ip_dst_addr, 'top-1m', 
't')",
    +            "local" : "IN_SUBNET(ip_dst_addr, '192.168.0.0/24')"
    +          }
    +        }
    +       },
    +       "fieldToTypeMap": {
    +       }
    +     },
    +     "threatIntel": {
    +     }
    +   }
    +   [Stellar]>>> CONFIG_PUT("ENRICHMENT", conf, "asa")
    +   ```
    +
    +### Create Input Telemetry
    +
    +1.  Create a template file that defines what your input telemetry will 
look-like.
    +
    +   ```bash
    +   > cat asa.template
    +   {"ciscotag": "ASA-1-123123", "source.type": "asa", "ip_dst_addr": 
"$DST_ADDR", "original_string": "<134>Feb 22 17:04:43 AHOSTNAME %ASA-1-123123: 
Built inbound ICMP connection for faddr 192.168.11.8/50244 gaddr 
192.168.1.236/0 laddr 192.168.1.1/161", "ip_src_addr": "192.168.1.35", 
"syslog_facility": "local1", "action": "built", "syslog_host": "AHOSTNAME", 
"timestamp": "$METRON_TS", "protocol": "icmp", "guid": "$METRON_GUID", 
"syslog_severity": "info"}
    +   ```
    +
    +2.  Use the template file along with the enrichment data to create input 
telemetry with varying IP addresses.
    +
    +   ```bash
    +   for i in $(head top-1m-with-ip.csv | awk -F, '{print $2}');do
    +           cat asa.template | sed "s/\$DST_ADDR/$i/";
    +   done > asa.input.template
    +   ```
    +
    +3. Use the `load_test.sh` script to push messages onto the input topic 
`enrichments` and monitor the output topic `indexing`.
    +
    +   If the topology is keeping up, obviously the events per second produced 
on the input topic should roughly match the output topic.
    +
    +   ```
    +   $METRON_HOME/bin/load_test.sh \
    +           -e 200000 \
    +           -ot enrichments \
    +           -mt indexing \
    +           -p 10 \
    +           -t asa.input.template \
    +           -z $ZOOKEEPER
    +   ```
    +
    +   [TODO] Link to the docs that get created for the `load_test.sh` script.
    +
    +### Cluster Setup
    +
    +#### Isolation
    +
    +The Enrichment topology depends on an environment with at least two and 
often three components that work together; Storm, Kafka, and HBase.  When any 
of two of these are run on the same node, it can be difficult to identify which 
of them is becoming a bottleneck.  This can cause poor and highly volatile 
performance as each steals resources from the other.  
    +
    +It is highly recommended that each of these systems be fully isolated from 
the others.  Storm should be run on nodes that are completely isolated from 
Kafka and HBase.
    +
    +### Monitoring
    +
    +1. The `load_test.sh` script will report the throughput for the input and 
output topics.  
    +
    +   * The input throughput should roughly match the output throughput if 
the topology is able to handle a given load.
    +
    +   * Not only are the raw throughput numbers important, but also the 
consistency of what is reported over time.  If the reported throughput is 
sporadic, then further tuning may be required.
    +
    +1. The Storm UI is obviously an important source of information.  The bolt 
capacity, complete latency, and any reported errors are all important to monitor
    +
    +1. The load reported by the OS is also an important metric to monitor.  
    +
    +   * The load metric should be monitored to ensure that each node is being 
pushed sufficiently, but not too much.
    +
    +    * The load should be evenly distributed across each node.  If the load 
is uneven, this may indicate a problem.
    --- End diff --
    
    The additional space is putting this bullet into a code block when rendered 
in the site-book.


---

Reply via email to