Github user cestella commented on the issue: https://github.com/apache/incubator-metron/pull/486 # Testing Plan ## Preliminaries * Please perform the following tests on the `full-dev` vagrant environment. * Set an environment variable to indicate `METRON_HOME`: `export METRON_HOME=/usr/metron/0.3.1` ## Ensure Data Flows from the Indices Ensure that with a basic full-dev we get data into the elasticsearch indices and into HDFS. ## (Optional) Free Up Space on the virtual machine First, let's free up some headroom on the virtual machine. If you are running this on a multinode cluster, you would not have to do this. * Stop and disable Metron in Ambari * Kill monit via `service monit stop` * Kill tcpreplay via `for i in $(ps -ef | grep tcpreplay | awk '{print $2}');do kill -9 $i;done` * Kill yaf via `for i in $(ps -ef | grep yaf | awk '{print $2}');do kill -9 $i;done` * Kill bro via `for i in $(ps -ef | grep bro | awk '{print $2}');do kill -9 $i;done` ## Test the PCAP topology A new kafka spout necessitates testing pcap. ### Install and start pycapa ``` # set env vars export PYCAPA_HOME=/opt/pycapa export PYTHON27_HOME=/opt/rh/python27/root # Install these packages via yum (RHEL, CentOS) yum -y install epel-release centos-release-scl yum -y install "@Development tools" python27 python27-scldevel python27-python-virtualenv libpcap-devel libselinux-python # Setup directories mkdir $PYCAPA_HOME && chmod 755 $PYCAPA_HOME # Create virtualenv export LD_LIBRARY_PATH="/opt/rh/python27/root/usr/lib64" ${PYTHON27_HOME}/usr/bin/virtualenv pycapa-venv # Copy pycapa # copy incubator-metron/metron-sensors/pycapa from the Metron source tree into $PYCAPA_HOME on the node you would like to install pycapa on. # Build it cd ${PYCAPA_HOME}/pycapa # activate the virtualenv source ${PYCAPA_HOME}/pycapa-venv/bin/activate pip install -r requirements.txt python setup.py install # Run it cd ${PYCAPA_HOME}/pycapa-venv/bin pycapa --producer --topic pcap -i eth1 -k node1:6667 ``` ### Ensure pycapa can write to HDFS * Ensure that `/apps/metron/pcap` exists and can be written to by the storm user. If not, then: ``` sudo su - hdfs hadoop fs -mkdir -p /apps/metron/pcap hadoop fs -chown metron:hadoop /apps/metron/pcap hadoop fs -chmod 775 /apps/metron/pcap ``` * Start the pcap topology via `$METRON_HOME/bin/start_pcap_topology.sh` * Start the pycapa packet capture producer on eth1 via `/usr/bin/pycapa --producer --topic pcap -i eth1 -k node1:6667` * Watch the topology in the Storm UI and kill the packet capture utility from before, when the number of packets ingested is over 3k. Ensure that at at least 3 files exist on HDFS by running `hadoop fs -ls /apps/metron/pcap` * Choose a file (denoted by $FILE) and dump a few of the contents using the pcap_inspector utility via `$METRON_HOME/bin/pcap_inspector.sh -i $FILE -n 5` * Choose one of the lines and note the protocol. * Note that when you run the commands below, the resulting file will be placed in the execution directory where you kicked off the job from. * Run a Stellar query filter query by executing a command similar to the following, with the values noted above (match your start_time format to the date format provided - default is to use millis since epoch): ``` $METRON_HOME/bin/pcap_query.sh query -st "20160617" -df "yyyyMMdd" -query "protocol == 6" -rpf 500 ``` * Verify the MR job finishes successfully. Upon completion, you should see multiple files named with relatively current datestamps in your current directory, e.g. pcap-data-20160617160549737+0000.pcap * Copy the files to your local machine and verify you can them it in Wireshark. I chose a middle file and the last file. The middle file should have 500 records (per the records_per_file option), and the last one will likely have a number of records <= 500. ## Test the Profiler ### Setup * Ensure that Metron is stopped and put in maintenance mode in Ambari * Create the profiler hbase table `echo "create 'profiler', 'P'" | hbase shell` * Open `~/rand_gen.py` and paste the following: ``` #!/usr/bin/python import random import sys import time def main(): mu = float(sys.argv[1]) sigma = float(sys.argv[2]) freq_s = int(sys.argv[3]) while True: out = '{ "value" : ' + str(random.gauss(mu, sigma)) + ' }' print out sys.stdout.flush() time.sleep(freq_s) if __name__ == '__main__': main() ``` This will generate random JSON maps with a numeric field called `value` * Set the profiler to use 1 minute tick durations: * Edit `$METRON_HOME/config/profiler.properties` to adjust the capture duration by changing `profiler.period.duration=15` to `profiler.period.duration=1` * Edit `$METRON_HOME/config/zookeeper/global.json` and add the following properties: ``` "profiler.client.period.duration" : "1", "profiler.client.period.duration.units" : "MINUTES" ``` ### Deploy the custom parser * Edit the value parser config at `$METRON_HOME/config/zookeeper/parsers/value.json`: ``` { "parserClassName":"org.apache.metron.parsers.json.JSONMapParser", "sensorTopic":"value", "fieldTransformations" : [ { "transformation" : "STELLAR" ,"output" : [ "num_profiles_parser", "mean_parser" ] ,"config" : { "num_profiles_parser" : "LENGTH(PROFILE_GET('stat', 'global', PROFILE_WINDOW('5 minute window every 10 minutes starting from 2 minutes ago until 32 minutes ago excluding holidays:us')))", "mean_parser" : "STATS_MEAN(STATS_MERGE(PROFILE_GET('stat', 'global', PROFILE_WINDOW('5 minute window every 10 minutes starting from 2 minutes ago until 32 minutes ago excluding holidays:us'))))" } } ] } ``` * Edit the value enrichment config at `$METRON_HOME/config/zookeeper/enrichments/value.json`: ``` { "enrichment" : { "fieldMap": { "stellar" : { "config" : { "num_profiles_enrichment" : "LENGTH(PROFILE_GET('stat', 'global', PROFILE_WINDOW('5 minute window every 10 minutes starting from 2 minutes ago until 32 minutes ago excluding holidays:us')))", "mean_enrichment" : "STATS_MEAN(STATS_MERGE(PROFILE_GET('stat', 'global', PROFILE_WINDOW('5 minute window every 10 minutes starting from 2 minutes ago until 32 minutes ago excluding holidays:us'))))" } } } } } ``` * Create the value kafka topic: `/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --zookeeper node1:2181 --create --topic value --partitions 1 --replication-factor 1` * Push the configs via `$METRON_HOME/bin/zk_load_configs.sh -m PUSH -i $METRON_HOME/config/zookeeper -z node1:2181` * Start via `$METRON_HOME/bin/start_parser_topology.sh -k node1:6667 -z node1:2181 -s value` ### Start the profiler * Edit `$METRON_HOME/config/zookeeper/profiler.json` and paste in the following: ``` { "profiles": [ { "profile": "stat", "foreach": "'global'", "onlyif": "true", "init" : { }, "update": { "s": "STATS_ADD(s, value)" }, "result": "s" } ] } ``` * `$METRON_HOME/bin/start_profiler_topology.sh` ### Test Case * Set up a profile to accept some synthetic data with a numeric `value` field and persist a stats summary of the data * Send some synthetic data directly to the profiler: `python ~/rand_gen.py 0 1 1 | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --broker-list node1:6667 --topic value` * Wait for at least 32 minutes and execute the following via the Stellar REPL: ``` # Grab the profiles from 1 minute ago to 8 minutes ago LENGTH(PROFILE_GET('stat', 'global', PROFILE_WINDOW('from 1 minute ago to 8 minutes ago'))) # Looks like 7 were returned, great. Now try something more complex # Grab the profiles in 5 minute windows every 10 minutes from 2 minutes ago to 32 minutes ago: # 32 minutes ago til 27 minutes ago should be 5 profiles # 22 minutes ago til 17 minutes ago should be 5 profiles # 12 minutes ago til 7 minutes ago should be 5 profiles # for a total of 15 profiles LENGTH(PROFILE_GET('stat', 'global', PROFILE_WINDOW('5 minute window every 10 minutes starting from 2 minutes ago until 32 minutes ago excluding holidays:us'))) ``` For me, the following was the result: ``` ``` * Delete any value index that currently exists (if any do) via `curl -XDELETE "http://localhost:9200/value*"` * Wait for a couple of seconds and run * `curl "http://localhost:9200/value*/_search?pretty=true&q=*:*" 2> /dev/null` * You should see values in the index with non-zero fields: * `num_profiles_enrichment` should be 15 * `num_profiles_parser` should be 15 * `mean_enrichment` should be a non-zero double * `mean_parser` should be a non-zero double For reference, a sample message for me is: ``` ```
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. ---