Scott Carey created PARQUET-1407:
------------------------------------

             Summary: Data loss on duplicate values with 
AvroParquetWriter/Reader
                 Key: PARQUET-1407
                 URL: https://issues.apache.org/jira/browse/PARQUET-1407
             Project: Parquet
          Issue Type: Bug
          Components: parquet-avro
    Affects Versions: 1.8.3
            Reporter: Scott Carey


{code:java}
public class Blah {

  private static Path parquetFile = new Path("oops");
  private static Schema schema = SchemaBuilder.record("spark_schema")
      .fields().optionalBytes("value").endRecord();

  private static GenericData.Record recordFor(String value) {
    return new GenericRecordBuilder(schema)
        .set("value", value.getBytes()).build();
  }

  public static void main(String ... args) throws IOException {
    try (ParquetWriter<GenericData.Record> writer = AvroParquetWriter
          .<GenericData.Record>builder(parquetFile)
          .withSchema(schema)
          .build()) {
      writer.write(recordFor("one"));
      writer.write(recordFor("two"));
      writer.write(recordFor("three"));
      writer.write(recordFor("three"));
      writer.write(recordFor("two"));
      writer.write(recordFor("one"));
      writer.write(recordFor("zero"));
    }

    try (ParquetReader<GenericRecord> reader = AvroParquetReader
        .<GenericRecord>builder(parquetFile)
        .withConf(new Configuration()).build()) {
      GenericRecord rec;
      int i = 0;
      while ((rec = reader.read()) != null) {
        ByteBuffer buf = (ByteBuffer) rec.get("value");
        byte[] bytes = new byte[buf.remaining()];
        buf.get(bytes);
        System.out.println("rec " + i++ + ": " + new String(bytes));
      }
    }
  }
}
{code}
Expected output:
{noformat}
rec 0: one
rec 1: two
rec 2: three
rec 3: three
rec 4: two
rec 5: one
rec 6: zero{noformat}
Actual:
{noformat}
rec 0: one
rec 1: two
rec 2: three
rec 3: 
rec 4: 
rec 5: 
rec 6: zero{noformat}
 

This was found when we started getting empty byte[] values back in spark 
unexpectedly.  (Spark 2.3.1 and Parquet 1.8.3).   I have not tried to reproduce 
with parquet 1.9.0, but its a bad enough bug that I would like a 1.8.4 release 
that I can drop-in replace 1.8.3 without any binary compatibility issues.

 

 



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to