[ 
https://issues.apache.org/jira/browse/PARQUET-632?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17039121#comment-17039121
 ] 

t oo commented on PARQUET-632:
------------------------------

I am facing same issue writing to S3A path with spark standalone (v2.3.4) but 
no EMR.

2020-02-17 21:26:35,367 [task-result-getter-3] WARN  
org.apache.spark.scheduler.TaskSetManager - Lost task 0.0 in stage 41.0 (TID 
47, xxx, executor 1): org.apache.spark.SparkException: Task failed while 
writing rows.
        at 
org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:288)
        at 
org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:198)
        at 
org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1.apply(FileFormatWriter.scala:197)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:109)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)
Caused by: java.io.IOException: No space left on device
        at java.io.FileOutputStream.writeBytes(Native Method)
        at java.io.FileOutputStream.write(FileOutputStream.java:326)
        at 
java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
        at java.io.BufferedOutputStream.write(BufferedOutputStream.java:126)
        at 
org.apache.hadoop.fs.s3a.S3AOutputStream.write(S3AOutputStream.java:140)
        at 
org.apache.hadoop.fs.FSDataOutputStream$PositionCache.write(FSDataOutputStream.java:58)
        at java.io.DataOutputStream.write(DataOutputStream.java:107)
        at java.io.FilterOutputStream.write(FilterOutputStream.java:97)
        at 
org.apache.parquet.bytes.ConcatenatingByteArrayCollector.writeAllTo(ConcatenatingByteArrayCollector.java:46)
        at 
org.apache.parquet.hadoop.ParquetFileWriter.writeDataPages(ParquetFileWriter.java:443)
        at 
org.apache.parquet.hadoop.ColumnChunkPageWriteStore$ColumnChunkPageWriter.writeToFileWriter(ColumnChunkPageWriteStore.java:186)
        at 
org.apache.parquet.hadoop.ColumnChunkPageWriteStore.flushToFileWriter(ColumnChunkPageWriteStore.java:245)
        at 
org.apache.parquet.hadoop.InternalParquetRecordWriter.flushRowGroupToStore(InternalParquetRecordWriter.java:168)
        at 
org.apache.parquet.hadoop.InternalParquetRecordWriter.checkBlockSizeReached(InternalParquetRecordWriter.java:143)
        at 
org.apache.parquet.hadoop.InternalParquetRecordWriter.write(InternalParquetRecordWriter.java:125)
        at 
org.apache.parquet.hadoop.ParquetRecordWriter.write(ParquetRecordWriter.java:180)
        at 
org.apache.parquet.hadoop.ParquetRecordWriter.write(ParquetRecordWriter.java:46)
        at 
org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.write(ParquetOutputWriter.scala:40)
        at 
org.apache.spark.sql.execution.datasources.FileFormatWriter$DynamicPartitionWriteTask$$anonfun$execute$5.apply(FileFormatWriter.scala:563)
        at 
org.apache.spark.sql.execution.datasources.FileFormatWriter$DynamicPartitionWriteTask$$anonfun$execute$5.apply(FileFormatWriter.scala:530)
        at scala.collection.Iterator$class.foreach(Iterator.scala:893)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
        at 
org.apache.spark.sql.execution.datasources.FileFormatWriter$DynamicPartitionWriteTask.execute(FileFormatWriter.scala:530)
        at 
org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:272)
        at 
org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply(FileFormatWriter.scala:270)
        at 
org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1417)
        at 
org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:275)
        ... 8 more
        Suppressed: java.io.IOException: The file being written is in an 
invalid state. Probably caused by an error thrown previously. Current state: 
COLUMN
                at 
org.apache.parquet.hadoop.ParquetFileWriter$STATE.error(ParquetFileWriter.java:182)
                at 
org.apache.parquet.hadoop.ParquetFileWriter$STATE.startBlock(ParquetFileWriter.java:174)
                at 
org.apache.parquet.hadoop.ParquetFileWriter.startBlock(ParquetFileWriter.java:284)
                at 
org.apache.parquet.hadoop.InternalParquetRecordWriter.flushRowGroupToStore(InternalParquetRecordWriter.java:166)
                at 
org.apache.parquet.hadoop.InternalParquetRecordWriter.close(InternalParquetRecordWriter.java:109)
                at 
org.apache.parquet.hadoop.ParquetRecordWriter.close(ParquetRecordWriter.java:163)
                at 
org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.close(ParquetOutputWriter.scala:42)
                at 
org.apache.spark.sql.execution.datasources.FileFormatWriter$DynamicPartitionWriteTask.releaseResources(FileFormatWriter.scala:577)
                at 
org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$1.apply$mcV$sp(FileFormatWriter.scala:278)
                at 
org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1426)
                ... 9 more
2020-02-17 21:26:35,368 [dispatcher-event-loop-9] INFO  
org.apache.spark.scheduler.TaskSetManager - Starting task 0.1 in stage 41.0 
(TID 48, xxx, executor 1, partition 0, PROCESS_LOCAL, 8657 bytes)











> Parquet file in invalid state while writing to S3 from EMR
> ----------------------------------------------------------
>
>                 Key: PARQUET-632
>                 URL: https://issues.apache.org/jira/browse/PARQUET-632
>             Project: Parquet
>          Issue Type: Bug
>    Affects Versions: 1.7.0
>            Reporter: Peter Halliday
>            Priority: Blocker
>
> I'm writing parquet to S3 from Spark 1.6.1 on EMR.  And when it got to the 
> last few files to write to S3, I received this stacktrace in the log with no 
> other errors before or after it.  It's very consistent.  This particular 
> batch keeps erroring the same way.
> {noformat}
> 2016-06-10 01:46:05,282] WARN org.apache.spark.scheduler.TaskSetManager 
> [task-result-getter-2hread] - Lost task 3737.0 in stage 2.0 (TID 10585, 
> ip-172-16-96-32.ec2.internal): org.apache.spark.SparkException: Task failed 
> while writing rows.
>       at 
> org.apache.spark.sql.execution.datasources.DynamicPartitionWriterContainer.writeRows(WriterContainer.scala:414)
>       at 
> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
>       at 
> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
>       at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
>       at org.apache.spark.scheduler.Task.run(Task.scala:89)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>       at java.lang.Thread.run(Thread.java:745)
> Caused by: java.io.IOException: The file being written is in an invalid 
> state. Probably caused by an error thrown previously. Current state: COLUMN
>       at 
> org.apache.parquet.hadoop.ParquetFileWriter$STATE.error(ParquetFileWriter.java:146)
>       at 
> org.apache.parquet.hadoop.ParquetFileWriter$STATE.startBlock(ParquetFileWriter.java:138)
>       at 
> org.apache.parquet.hadoop.ParquetFileWriter.startBlock(ParquetFileWriter.java:195)
>       at 
> org.apache.parquet.hadoop.InternalParquetRecordWriter.flushRowGroupToStore(InternalParquetRecordWriter.java:153)
>       at 
> org.apache.parquet.hadoop.InternalParquetRecordWriter.close(InternalParquetRecordWriter.java:113)
>       at 
> org.apache.parquet.hadoop.ParquetRecordWriter.close(ParquetRecordWriter.java:112)
>       at 
> org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.close(ParquetRelation.scala:101)
>       at 
> org.apache.spark.sql.execution.datasources.DynamicPartitionWriterContainer.writeRows(WriterContainer.scala:405)
>       ... 8 more
> {noformat}



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to