

Skip to site navigation (Press enter)

[jira] [Comment Edited] (PDFBOX-2205) (Graphics) Operator Refactoring

John Hewson (JIRA)
Sat, 12 Jul 2014 11:49:27 -0700

 [
https://issues.apache.org/jira/browse/PDFBOX-2205?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14059880#comment-14059880
]

John Hewson edited comment on PDFBOX-2205 at 7/12/14 6:48 PM:
--

Ok, I committed this is [r1610021|http://svn.apache.org/r1610021]. I introduced
a new class {{PDFGraphicsStreamEngine}} which the old "operators.pagedrawer"
classes now direct all their callbacks to. The existing {{PageDrawer}} is now a
subclass of this class. The "operators.pagedrawer" is now "operators.graphics".

{{PDFGraphicsStreamEngine}} contains many new graphics callbacks which
previously were routed directly to {{PageDrawer}}, such as {{moveTo}},
{{lineTo}}, {{curveTo}}, etc. I've also encapsulated the GeneralPath and
TransparencyGroup objects which PageDrawer was making use of. Overall I find
that the code is much easier to read and to reason about: a nice side-effect.

I took the opportunity to do some general cleaning of the operator classes,
fixing the JavaDoc and generally cleaning things up, along with some
repackaging. I fixed a few long-standing quirky names which didn't match the
spec such as Invoke and SHFill (these classes have moved from "pagedrawer" to
"graphics" anyway, so we might as well change the names of them too.

It's probably worth emphasising that now we have PDFGraphicsStreamEngine and
PDFTextStreamEngine that subclassing of operators is basically deprecated - it
isn't fully - but most users should be subclassing one of these two classes for
most use cases where operator overloading was performed. One reason why
operator overloading is so undesirable is that it effectively messes with
PDFBox's internals, breaking encapsulation and forcing users into copying and
pasting code from PDFBox into their own code when super.process() isn't
flexible enough for them.

I've noticed that I'm getting very slightly different renderings due to some
ints no longer being truncated inside the operator classes. However, we
shouldn't be seeing any rendering changes - any regressions please let me know.
Likewise, any feedback is more than welcome.

was (Author: jahewson):
Ok, I committed this is [r1610021|http://svn.apache.org/r1610021]. I introduced
a new class {{PDFGraphicsStreamEngine}} which the old "operators.pagedrawer"
operators now direct all their callbacks to. The existing {{PageDrawer}} is now
a subclass of this class. The "operators.pagedrawer" is now
"operators.graphics".

{{PDFGraphicsStreamEngine}} contains many new graphics callbacks which
previously were routed directly to {{PageDrawer}}, such as {{moveTo}},
{{lineTo}}, {{curveTo}}, etc. I've also encapsulated the GeneralPath and
TransparencyGroup objects which PageDrawer was making use of. Overall I find
that the code is much easier to read and to reason about: a nice side-effect.

I took the opportunity to do some general cleaning of the operator classes,
fixing the JavaDoc and generally cleaning things up, along with some
repackaging. I fixed a few long-standing quirky names which didn't match the
spec such as Invoke and SHFill (these classes have moved from "pagedrawer" to
"graphics" anyway, so we might as well change the names of them too.

It's probably worth emphasising that now we have PDFGraphicsStreamEngine and
PDFTextStreamEngine that subclassing of operators is basically deprecated - it
isn't fully - but most users should be subclassing one of these two classes for
most use cases where operator overloading was performed. One reason why
operator overloading is so undesirable is that it effectively messes with
PDFBox's internals, breaking encapsulation and forcing users into copying and
pasting code from PDFBox into their own code when super.process() isn't
flexible enough for them.

I've noticed that I'm getting very slightly different renderings due to some
ints no longer being truncated inside the operator classes. However, we
shouldn't be seeing any rendering changes - any regressions please let me know.
Likewise, any feedback is more than welcome.

> (Graphics) Operator Refactoring
> -------------------------------
>
> Key: PDFBOX-2205
> URL: https://issues.apache.org/jira/browse/PDFBOX-2205
> Project: PDFBox
> Issue Type: Improvement
> Components: PDModel, Rendering
> Affects Versions: 2.0.0
> Reporter: John Hewson
> Fix For: 2.0.0
>
>
> I'm in the process of porting a fairly complex program which uses the 1.8 API
> over to 2.0, as a way of finding out where the rough edges in 2.0 are. The
> app which I'm porting hooks into many of the graphics operators and
> subclasses PageDrawer to get access to the PDF's graphics state.
> It turns out that this doesn't work very well, especially in 2.0 where more
> of the PageDrawer's state is private and we have the additional complexity of
> transparency groups.
> The main issue is that the graphics operators are coupled to PageDrawer, but
> I'm not interested in the AWT rendering, I just need a way to hook into the
> graphics operations - subclassing the operators has proven to be a poor
> solution as there are cases where calling super.process() doesn't provide
> enough flexibility.
> So here's my solution: in the same way that text processing was recently
> factored-out into PDFTextStreamEngine for end-users to subclass, I'd like to
> do the same with graphics operations. Instead of the graphics operators being
> coupled to PageDrawer, which is only one possible implementation of graphics
> handling, we can move the methods which the operators call up into a new
> subclass of PDFStreamEngine, let's call it PDFGraphicsStreamEngine. This
> class can then be subclassed by anyone interested in hooking into the
> graphics operations, including PageDrawer.
> With the new callbacks for text handling already in PDFTextStreamEngine and
> the addition of new graphics callbacks in PDFGraphicsStreamEngine, most of
> the time it shouldn't be necessary for end-users to need to override the
> operator classes to get access to the information they need, which would be a
> huge benefit :)
> This will involve a bunch of changes to operators, so I'll take the chance to
> do some general cleaning up while I'm at it: the operator classes haven't
> received much attention for a while. With more callbacks in PDFStreamEngine
> et al, we're moving towards a point where the operator classes are becoming
> almost an internal part of the PDFBox API: might be something to think about
> for the future.

--
This message was sent by Atlassian JIRA
(v6.2#6252)

	Previous message
	View by thread
	View by date
	Next message

	[jira] [Comment Edited] (PDFBOX-2205) (Graphics) Op... John Hewson (JIRA)
		[jira] [Comment Edited] (PDFBOX-2205) (Graphic... John Hewson (JIRA)
	[jira] [Comment Edited] (PDFBOX-2205) (Graphic... John Hewson (JIRA)
	[jira] [Comment Edited] (PDFBOX-2205) (Graphic... John Hewson (JIRA)
	[jira] [Comment Edited] (PDFBOX-2205) (Graphic... John Hewson (JIRA)
	[jira] [Comment Edited] (PDFBOX-2205) (Graphic... John Hewson (JIRA)
	[jira] [Comment Edited] (PDFBOX-2205) (Graphic... John Hewson (JIRA)
	[jira] [Comment Edited] (PDFBOX-2205) (Graphic... John Hewson (JIRA)
	[jira] [Comment Edited] (PDFBOX-2205) (Graphic... Tilman Hausherr (JIRA)
	[jira] [Comment Edited] (PDFBOX-2205) (Graphic... Tilman Hausherr (JIRA)
	[jira] [Comment Edited] (PDFBOX-2205) (Graphic... Tilman Hausherr (JIRA)

					Reply via email to

Search the site

	The Mail Archive home
	dev - all messages
	dev - about the list
	Expand
	Previous message
	Next message

	The Mail Archive home
	Add your mailing list
	FAQ
	Support
	Privacy
	JIRA.12726957.1405189451904.30939.1405190944600@arcas

