[ https://issues.apache.org/jira/browse/PHOENIX-1071?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14270555#comment-14270555 ]
James Taylor commented on PHOENIX-1071: --------------------------------------- Interesting WIP here: https://github.com/simplymeasured/phoenix-spark. Also, FYI, the input/output formats have been generalized by [~maghamraviki...@gmail.com]. See docs here: http://phoenix.apache.org/phoenix_mr.html > Provide integration for exposing Phoenix tables as Spark RDDs > ------------------------------------------------------------- > > Key: PHOENIX-1071 > URL: https://issues.apache.org/jira/browse/PHOENIX-1071 > Project: Phoenix > Issue Type: New Feature > Reporter: Andrew Purtell > > A core concept of Apache Spark is the resilient distributed dataset (RDD), a > "fault-tolerant collection of elements that can be operated on in parallel". > One can create a RDDs referencing a dataset in any external storage system > offering a Hadoop InputFormat, like PhoenixInputFormat and > PhoenixOutputFormat. There could be opportunities for additional interesting > and deep integration. > Add the ability to save RDDs back to Phoenix with a {{saveAsPhoenixTable}} > action, implicitly creating necessary schema on demand. > Add support for {{filter}} transformations that push predicates to the server. > Add a new {{select}} transformation supporting a LINQ-like DSL, for example: > {code} > // Count the number of different coffee varieties offered by each > // supplier from Guatemala > phoenixTable("coffees") > .select(c => > where(c.origin == "GT")) > .countByKey() > .foreach(r => println(r._1 + "=" + r._2)) > {code} > Support conversions between Scala and Java types and Phoenix table data. -- This message was sent by Atlassian JIRA (v6.3.4#6332)