[ 
https://issues.apache.org/jira/browse/PHOENIX-1071?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14389673#comment-14389673
 ] 

ASF GitHub Bot commented on PHOENIX-1071:
-----------------------------------------

Github user jmahonin commented on the pull request:

    https://github.com/apache/phoenix/pull/59#issuecomment-88285575
  
    Can confirm the memory settings needed adjustment on 7u76 on Linux.
    
    Special thanks to @robdaemon who had an excellent library to work with, and 
a pre-emptive thanks to @dacort for the copyrights!
    
    My preference would be to put the RelationProvider work under a new ticket. 
It's separate functionality, and although I've made a bit of headway there, 
testing against the current SparkSQLContext API is yielding some bizarre 
results. 
    
    It's fairly likely I'm doing something wrong, but that's a brand new API 
for Spark. Most of the methods have @DeveloperAPI annotations (read: unstable), 
and a number of fixes are slated for Spark SQL in 1.3.1, so I expect a bit of 
churn in that area for the time being.


> Provide integration for exposing Phoenix tables as Spark RDDs
> -------------------------------------------------------------
>
>                 Key: PHOENIX-1071
>                 URL: https://issues.apache.org/jira/browse/PHOENIX-1071
>             Project: Phoenix
>          Issue Type: New Feature
>            Reporter: Andrew Purtell
>
> A core concept of Apache Spark is the resilient distributed dataset (RDD), a 
> "fault-tolerant collection of elements that can be operated on in parallel". 
> One can create a RDDs referencing a dataset in any external storage system 
> offering a Hadoop InputFormat, like PhoenixInputFormat and 
> PhoenixOutputFormat. There could be opportunities for additional interesting 
> and deep integration. 
> Add the ability to save RDDs back to Phoenix with a {{saveAsPhoenixTable}} 
> action, implicitly creating necessary schema on demand.
> Add support for {{filter}} transformations that push predicates to the server.
> Add a new {{select}} transformation supporting a LINQ-like DSL, for example:
> {code}
> // Count the number of different coffee varieties offered by each
> // supplier from Guatemala
> phoenixTable("coffees")
>     .select(c =>
>         where(c.origin == "GT"))
>     .countByKey()
>     .foreach(r => println(r._1 + "=" + r._2))
> {code} 
> Support conversions between Scala and Java types and Phoenix table data.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to