[ 
https://issues.apache.org/jira/browse/PIG-2831?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=13427036#comment-13427036
 ] 

Prasanth J commented on PIG-2831:
---------------------------------

Ya. I could do that. Looks like this will need a separate map job for reading 
few tuples? I think this will require tweaking the loader to emit a special 
tuple with the estimated number of records. 

I will try that once the end to end base implementation is up. For now the way 
I am counting the sample size is by using RandomSampleLoader. I am sampling 
1000 tuples per mapper and using that samples for naive computation and 
determining the partition size. But RandomSampleLoader always returns more 
samples than expected. Not sure if its a bug!!. Once the complete 
implementation is done we can look into more accurate estimate of number of 
tuples etc. Will soon submit an intermediate patch for review. 

Also given the in-memory size of a tuple, how can we estimate the number of 
tuples that a reducer can handle without spilling to disk? 
                
> MR-Cube implementation (Distributed cubing for holistic measures)
> -----------------------------------------------------------------
>
>                 Key: PIG-2831
>                 URL: https://issues.apache.org/jira/browse/PIG-2831
>             Project: Pig
>          Issue Type: Sub-task
>            Reporter: Prasanth J
>            Assignee: Prasanth J
>
> Implementing distributed cube materialization on holistic measure based on 
> MR-Cube approach as described in http://arnab.org/files/mrcube.pdf. 
> Primary steps involved:
> 1) Identify if the measure is holistic or not
> 2) Determine algebraic attribute (can be detected automatically for few 
> cases, if automatic detection fails user should hint the algebraic attribute)
> 3) Modify MRPlan to insert a sampling job which executes naive cube algorithm 
> and generates annotated cube lattice (contains large group partitioning 
> information)
> 4) Modify plan to distribute annotated cube lattice to all mappers using 
> distributed cache
> 5) Execute actual cube materialization on full dataset
> 6) Modify MRPlan to insert a post process job for combining the results of 
> actual cube materialization job
> 7) OOM exception handling

--
This message is automatically generated by JIRA.
If you think it was sent incorrectly, please contact your JIRA administrators: 
https://issues.apache.org/jira/secure/ContactAdministrators!default.jspa
For more information on JIRA, see: http://www.atlassian.com/software/jira

        

Reply via email to