[ https://issues.apache.org/jira/browse/SINGA-476?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16954192#comment-16954192 ]
ASF subversion and git services commented on SINGA-476: ------------------------------------------------------- Commit 0d1eaaac549e574d75a496eee3037ba91fc8f6b9 in incubator-singa's branch refs/heads/master from Wei Wang [ https://gitbox.apache.org/repos/asf?p=incubator-singa.git;h=0d1eaaa ] Merge pull request #540 from dcslin/SoftMaxOnAxis SINGA-476 added softmax with axis > Autograd operators for ONNX > --------------------------- > > Key: SINGA-476 > URL: https://issues.apache.org/jira/browse/SINGA-476 > Project: Singa > Issue Type: New Feature > Reporter: zhangzhaoqi > Priority: Critical > Attachments: arcface(based resnet100).png, bidaf.png, tiny_yolov2.png > > Time Spent: 10m > Remaining Estimate: 0h > > For the demo purpose, we need to implement these three models and their > components as following: > h2. [Tiny yolov2|https://arxiv.org/pdf/1612.08242.pdf] > Add > BatchNormalization > Conv > LeakyRelu > MaxPool > Mul > h2. [Arcface|https://arxiv.org/pdf/1801.07698.pdf] > Acos > Add > BatchNormalization > Conv > Cos > Dropout > Flatten > Gemm > Identity > InstanceNormalization > LpNormalization > Mul > PRelu > Reshape > Sub > h2. [BIDAF|https://arxiv.org/pdf/1611.01603.pdf] > Abs > Add > Add > ArgMax > Cast > Ceil > Clip > Compress > Concat > ConstantOfShape > Conv > Dropout > Gather > Hardmax > Log > LSTM > MatMul > ReduceMax > ReduceSum > Relu > Shape > Sigmoid > Slice > Squeeze > Sub > Sum > Transpose > Unsqueeze > > In summary, we already implemented 13 ops, and there're still 27 ops needed > to be implemented: > h2. Already implemented: > -Acos- > -BatchNormalization- > -Cos- > -Conv- > -LeakyRelu- > -LSTM- > -Abs- > -MaxPool- > -Flatten- > -Add- > -MatMul- > -Relu- > -Sigmoid- > h2. To be implemented: > ArgMax > Cast > Ceil > Clip > Compress > Concat > ConstantOfShape > Dropout > Gather > Gemm > Hardmax > Identity > InstanceNormalization > Log > LpNormalization > Mul > PRelu > ReduceMax > ReduceSum > Reshape > Shape > Slice > Squeeze > Sub > Sum > Transpose > Unsqueeze > Please refer to the [ONNX Operator Schemas| > https://github.com/onnx/onnx/blob/master/docs/Operators.md] for more detailed > information. -- This message was sent by Atlassian Jira (v8.3.4#803005)