dcslin commented on a change in pull request #662:
URL: https://github.com/apache/singa/pull/662#discussion_r412652862
##########
File path: python/singa/autograd.py
##########
@@ -3330,6 +3330,94 @@ def step_forward(self, x, h, c, Wx, Wh, Bx, Bh):
return hout, cout
+class _RNN(Operation):
+ """ RNN operation with c++ backend
+ """
+ def __init__(self, handle):
+ assert singa.USE_CUDA is True, "Not able to run without CUDA"
+ super(_RNN, self).__init__()
+ self.handle = handle
+
+ def forward(self, x, W):
+ # TODO: CPU forward
+
+ # GPU forward
+ if training:
+ y = singa.GpuRNNForwardTraining(x, W, self.handle)
+ self.inputs = (x, W, y)
+ else:
+ y = singa.GpuRNNForwardInference(x, W, self.handle)
+
+ return y
+
+ def backward(self, dy):
+ assert training is True and hasattr(
+ self, "inputs"), "Please set training as True before do BP. "
+
+ # TODO: CPU backward
+
+ # GPU backward
+ dx = singa.GpuRNNBackwardx(self.inputs[2], dy, self.inputs[1],
self.handle)
+ dW = singa.GpuRNNBackwardW(self.inputs[0], self.inputs[2], self.handle)
+ return dx, dW
+
+class RNN_direct(Layer):
Review comment:
this is rectified
##########
File path: src/api/model_operation.i
##########
@@ -188,6 +189,50 @@ Tensor GpuPoolingForward(const CudnnPoolingHandle &cph,
const Tensor &x);
Tensor GpuPoolingBackward(const CudnnPoolingHandle &cph, const Tensor &dy,
const Tensor& x, const Tensor& y);
+
+class CudnnRNNHandle {
+ public:
+ CudnnRNNHandle(const std::vector<Tensor> &x,
+ const int feature_size,
+ const int hidden_size,
+ const int mode = 0,
+ const int num_layers = 1,
+ const int bias = 1,
+ const float dropout = 0.0f,
+ const int bidirectional = 0);
Review comment:
this is rectified
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]