nudles commented on issue #691:
URL: https://github.com/apache/singa/issues/691#issuecomment-629269482
**Updated on May 15 Night**
```python
class Layer:
def get_params(self):
"""the params of this layer and sublayers as a dict; param name is:
layername.param
e.g., self.W = Tensor(), self.b=Tensor()
name of W and b is like conv1.W and conv1.b
"""
def get_states(self):
"""states of this layer as sublayers that are necessary for model
training/evaluation/inference.
the states include the params and others, e.g., the running mean
and var of batchnorm.
"""
class Module(Layer):
def compile(self ...):
"""set the name of each layer and sublayers, which will be used to
create the dict
for get_params and get_states. Then no need to manually config the
layer name
the __init__ method of a layer.
For instance,
class Blk(Layer):
def __init__(self):
self.conv1= Conv2d()
self.conv2 = Conv2d()
class MyModel(Module):
def __init__(self):
self.blk1 = Blk() --> blk1.conv1, blk1.conv2
self.blk2 = Blk() --> blk2.conv1, blk2.conv2
"""
# high priority
def save_states(self, fpath, aux_states={}):
"""Save states.
Args:
fpath: output file path (without the extension)
aux_states(dict): values are standard data types or Tensor,
e.g., epoch ID, learning rate, optimizer
states
"""
states = get_states() + aux_states + input_placeholders
tensor_dict = {}
for k, v in states:
if type(v) is Tensor:
tensor_dict[k] = v
states[k] = {'shape': v.shape, 'dtype': v.dtype}
save states as json file
save tensor_dict via numpy or hdf5 or protobuf
zip the output files
def load_states(self, fpath, dev, use_graph=True, graph_alg='sequence'):
"""Load the model onto dev
Args:
path: input file path (without the extension)
Returns:
dict
```
unzip the input file
load the json file --> states
load the tensor files --> tensor_dict
put the tensors into states
states --> model_states + input_placeholders + aux_states
self.compile(input_placeholders, dev, use_graph, graph_alg)
model.set_states(model_states)
return the rest states as a dict
# lower priority
def save(fpath, model):
attributes <-- model
replace all tensors in attributes --> {'shape': v.shape, 'dtype':
v.dtype}
dump the tensors via numpy or protobuf or hdf5
dump model via pickle
zip the output files
def load(fpath, dev, use_graph, graph_alg):
unzip the input file
load model via pickle
load tensors
restore the tensors in model attributes
return the model
# handle ONNX
def to_onnx(model):
return a onnx model
class SONNXModel(Module):
def __init__(self, onnx_model):
self.store_output = store_output
for layer_name, layer_config in get_layer(onnx_model):
self.__dict__[layer_name] = CreateLayer(...)
def forward(self, aux_output):
run forward according to onnx graph
return the last output + aux_output
class MyModel(SONNXModel):
def __init__(self, onnx):
super.__init__(onnx)
self.layer1 = Conv()
self.layer2 = Conv()
def forward(self, x):
x1, x2 = super.forward(x, aux_output)
x = self.layer1.forward(x2)
return self.layer2.forward(x1) + x
def train_one_batch(self, x, y):
y_ = self.forward(x)
....
```
Clarification:
* Params: layer parameters (Tensor) that are updated via SGD.
`Layer.get_params()`
* States: Params + other variables that are necessary for model
evaluation/inference. Superset of params. `Layer.get_states()`
* Attributes: members of a class instance `class.__dict__`. Superset of
states.
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]