joddiy edited a comment on issue #691:
URL: https://github.com/apache/singa/issues/691#issuecomment-629604531
```
# handle ONNX
def to_onnx(model):
return a onnx model
class SONNXModel(Module):
def __init__(self, onnx_model):
singa_rep = sonnx.prepare(onnx_model, device=dev, batchsize=1)
for layer_name, layer in singa_rep.layers:
self.__dict__[layer_name] = layer
# store weights here as numpy
for weith_name, weight in singa_rep.weights:
self.weights[weith_name] = weight
# store layer info such as input and output name(only weights)
for layer_name, layer_info in singa_rep.layer_infos:
self.layer_infos[layer_name] = layer_info
def forward(self, aux_output):
# run forward according to onnx graph
return the last output + aux_output
def compile(self)
# init weights
super.compile(self)
# set weights' value
for layer_name, layer in self.__dict__:
input_info, output_info = self.layer_infos[layer_name]
for input_name in input_info:
layer.set_weight(self.weights[input_name])
class MyModel(SONNXModel):
def __init__(self, onnx):
super.__init__(onnx)
self.layer1 = Conv()
self.layer2 = Conv()
def forward(self, x):
x1, x2 = super.forward(x, aux_output)
x = self.layer1.forward(x2)
return self.layer2.forward(x1) + x
def train_one_batch(self, x, y):
y_ = self.forward(x)
....
```
How about this one, we pareses onnx by `soon.prepare`(Backend), it returns a
`singa_rep`(BackendRep), and the singa_rep contains the layers, weights and
input_output_info, we store the layers in `self.__dict__`. When we compile the
model, first we call super() to init the params, then we set its value from the
onnx loaded weights.
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]