Thank you for the reply ! that make sense :) On Thu, Mar 6, 2014 at 11:11 AM, yao <yaosheng...@gmail.com> wrote: > Hi Fabrizio, > > Can someone explain me why do I get SparkConf not serializable error ? >> > > First, SparkConf is not serializable and that's what the exception tells > you. Why you stuck in this situation ? Well, that's must because some of > your classes must require a SparkConf class. In your case, that's because > you define your Custom and CustomOrdering inside the test class. Spark > serializes all dependencies needed by your closure and here Custom and > CustomOrdering requires RDDSuite which in turn requires SharedSparkContext. > So the reference chain would be Custom, CustomOrdering <- RDDSuite <- > SharedSparkContext <- SparkContext <- SparkConf. Now you see, your code do > ask Spark to serialize SparkConf and it is not serializable in current > implementation. The solution is very simple, move your Custom and > CustomOrdering out of RDDSuite class, that's it. > > Thanks > -Shengzhe > > On Sat, Feb 22, 2014 at 5:35 PM, Fabrizio Milo aka misto < > mistob...@gmail.com> wrote: > >> Hello Spark Developers, >> >> While trying to use the takeOrdered method of RDD in the following way: >> >> object AceScoreOrdering extends Ordering[Record] { >> def compare(a:Record, b:Record) = a.score.ace_score compare >> b.score.ace_score >> } >> >> val collected = dataset.takeOrdered(topN)(AceScoreOrdering) >> >> I got this error: >> >> 14/02/22 09:11:53 ERROR actor.OneForOneStrategy: >> scala.collection.immutable.Nil$ cannot be cast to >> org.apache.spark.util.BoundedPriorityQueue >> java.lang.ClassCastException: scala.collection.immutable.Nil$ cannot >> be cast to org.apache.spark.util.BoundedPriorityQueue >> at org.apache.spark.rdd.RDD$$anonfun$top$2.apply(RDD.scala:941) >> at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:727) >> at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:724) >> at org.apache.spark.scheduler.JobWaiter.taskSucceeded(JobWaiter.scala:56) >> at >> org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:843) >> at >> org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:598) >> at >> org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190) >> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) >> at akka.actor.ActorCell.invoke(ActorCell.scala:456) >> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) >> at akka.dispatch.Mailbox.run(Mailbox.scala:219) >> at >> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) >> at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) >> at >> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) >> at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) >> >> >> The error happens in this piece of code ( this is from today's TIP on >> github) : >> >> def top(num: Int)(implicit ord: Ordering[T]): Array[T] = { >> mapPartitions { items => >> val queue = new BoundedPriorityQueue[T](num) >> queue ++= items >> Iterator.single(queue) >> }.reduce { (queue1, queue2) => >> queue1 ++= queue2 >> queue1 >> }.toArray.sorted(ord.reverse) >> } >> >> I am not an expert of scala but looks like in case one of the >> partition returns a completely empty >> collection ( scala.collection.immutable.Nil ? ) then the system is not >> able to reduce it to a queue. >> >> Now the real question is that I was trying to emulate this behavior >> with a simple test inside RDDSuite.scala: >> >> >> test("takeOrdered with nil partition") { >> case class Custom(value: Int) extends Serializable >> object CustomOrdering extends Ordering[Custom] { >> def compare(a:Custom, b:Custom) = a.value compare b.value >> } >> val nums = Array(Custom(1), Custom(2)) >> val rdd = sc.makeRDD(nums, 2) >> val sortedTopK = rdd.takeOrdered(3)(CustomOrdering) >> assert(sortedTopK.size === 2) >> assert(sortedTopK === Array(Custom(1), Custom(2))) >> assert(sortedTopK === nums.sorted(CustomOrdering).take(2)) >> } >> >> >> But out of no where I get this error: >> >> Job aborted: Task not serializable: java.io.NotSerializableException: >> org.apache.spark.SparkConf >> org.apache.spark.SparkException: Job aborted: Task not serializable: >> java.io.NotSerializableException: org.apache.spark.SparkConf >> at >> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1017) >> at >> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1015) >> at >> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >> at org.apache.spark.scheduler.DAGScheduler.org >> $apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1015) >> at org.apache.spark.scheduler.DAGScheduler.org >> $apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:778) >> at org.apache.spark.scheduler.DAGScheduler.org >> $apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:721) >> at >> org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:551) >> at >> org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190) >> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) >> at akka.actor.ActorCell.invoke(ActorCell.scala:456) >> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) >> at akka.dispatch.Mailbox.run(Mailbox.scala:219) >> at >> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) >> at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) >> at >> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) >> at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) >> at >> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) >> >> >> Can someone explain me why do I get SparkConf not serializable error ? >> out of where ? >> >> Thank you for you time >> >> Fabrizio >> -- >> LinkedIn: http://linkedin.com/in/fmilo >> Twitter: @fabmilo >> Github: http://github.com/Mistobaan/ >> ----------------------- >> Simplicity, consistency, and repetition - that's how you get through. >> (Jack Welch) >> Perfection must be reached by degrees; she requires the slow hand of >> time (Voltaire) >> The best way to predict the future is to invent it (Alan Kay) >>
-- LinkedIn: http://linkedin.com/in/fmilo Twitter: @fabmilo Github: http://github.com/Mistobaan/ ----------------------- Simplicity, consistency, and repetition - that's how you get through. (Jack Welch) Perfection must be reached by degrees; she requires the slow hand of time (Voltaire) The best way to predict the future is to invent it (Alan Kay)