I validated that I can reproduce this problem with master as well (without adding any of my mllib changes)...
I separated mllib jar from assembly, deploy the assembly and then I supply the mllib jar as --jars option to spark-submit... I get this error: 14/08/09 12:49:32 INFO DAGScheduler: Failed to run count at ALS.scala:299 Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 238 in stage 40.0 failed 4 times, most recent failure: Lost task 238.3 in stage 40.0 (TID 10002, tblpmidn05adv-hdp.tdc.vzwcorp.com): java.lang.ClassCastException: scala.Tuple1 cannot be cast to scala.Product2 org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$5$$anonfun$apply$4.apply(CoGroupedRDD.scala:159) scala.collection.Iterator$$anon$11.next(Iterator.scala:328) org.apache.spark.util.collection.ExternalAppendOnlyMap.insertAll(ExternalAppendOnlyMap.scala:138) org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$5.apply(CoGroupedRDD.scala:159) org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$5.apply(CoGroupedRDD.scala:158) scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772) scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771) org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:158) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.rdd.FlatMappedValuesRDD.compute(FlatMappedValuesRDD.scala:31) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$2.apply(CoGroupedRDD.scala:129) org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$2.apply(CoGroupedRDD.scala:126) scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772) scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108) scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771) org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:126) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.rdd.FlatMappedValuesRDD.compute(FlatMappedValuesRDD.scala:31) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.rdd.FlatMappedRDD.compute(FlatMappedRDD.scala:33) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:61) org.apache.spark.rdd.RDD.iterator(RDD.scala:227) org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:62) org.apache.spark.scheduler.Task.run(Task.scala:54) org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:199) java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) java.lang.Thread.run(Thread.java:744) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1153) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1142) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1141) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1141) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:682) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:682) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:682) at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1359) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at akka.actor.ActorCell.invoke(ActorCell.scala:456) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at akka.dispatch.Mailbox.run(Mailbox.scala:219) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) I will try now with mllib inside the assembly....If that works then something is weird here ! On Sat, Aug 9, 2014 at 12:46 AM, Debasish Das <debasish.da...@gmail.com> wrote: > Hi Xiangrui, > > Based on your suggestion I moved core and mllib both to 1.1.0-SNAPSHOT...I > am still getting class cast exception: > > Exception in thread "main" org.apache.spark.SparkException: Job aborted > due to stage failure: Task 249 in stage 52.0 failed 4 times, most recent > failure: Lost task 249.3 in stage 52.0 (TID 10002, > tblpmidn06adv-hdp.tdc.vzwcorp.com): java.lang.ClassCastException: > scala.Tuple1 cannot be cast to scala.Product2 > > I am running ALS.scala merged with my changes. I will try the mllib jar > without my changes next... > > Can this be due to the fact that my jars are compiled with Java 1.7_55 but > the cluster JRE is at 1.7_45. > > Thanks. > > Deb > > > > > On Wed, Aug 6, 2014 at 12:01 PM, Debasish Das <debasish.da...@gmail.com> > wrote: > >> I did not play with Hadoop settings...everything is compiled with >> 2.3.0CDH5.0.2 for me... >> >> I did try to bump the version number of HBase from 0.94 to 0.96 or 0.98 >> but there was no profile for CDH in the pom...but that's unrelated to this ! >> >> >> On Wed, Aug 6, 2014 at 9:45 AM, DB Tsai <dbt...@dbtsai.com> wrote: >> >>> One related question, is mllib jar independent from hadoop version >>> (doesnt use hadoop api directly)? Can I use mllib jar compile for one >>> version of hadoop and use it in another version of hadoop? >>> >>> Sent from my Google Nexus 5 >>> On Aug 6, 2014 8:29 AM, "Debasish Das" <debasish.da...@gmail.com> wrote: >>> >>>> Hi Xiangrui, >>>> >>>> Maintaining another file will be a pain later so I deployed spark 1.0.1 >>>> without mllib and then my application jar bundles mllib 1.1.0-SNAPSHOT >>>> along with the code changes for quadratic optimization... >>>> >>>> Later the plan is to patch the snapshot mllib with the deployed stable >>>> mllib... >>>> >>>> There are 5 variants that I am experimenting with around 400M ratings >>>> (daily data, monthly data I will update in few days)... >>>> >>>> 1. LS >>>> 2. NNLS >>>> 3. Quadratic with bounds >>>> 4. Quadratic with L1 >>>> 5. Quadratic with equality and positivity >>>> >>>> Now the ALS 1.1.0 snapshot runs fine but after completion on this step >>>> ALS.scala:311 >>>> >>>> // Materialize usersOut and productsOut. >>>> usersOut.count() >>>> >>>> I am getting from one of the executors: java.lang.ClassCastException: >>>> scala.Tuple1 cannot be cast to scala.Product2 >>>> >>>> I am debugging it further but I was wondering if this is due to RDD >>>> compatibility within 1.0.1 and 1.1.0-SNAPSHOT ? >>>> >>>> I have built the jars on my Mac which has Java 1.7.0_55 but the deployed >>>> cluster has Java 1.7.0_45. >>>> >>>> The flow runs fine on my localhost spark 1.0.1 with 1 worker. Can that >>>> Java >>>> version mismatch cause this ? >>>> >>>> Stack traces are below >>>> >>>> Thanks. >>>> Deb >>>> >>>> >>>> Executor stacktrace: >>>> >>>> >>>> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$4.apply(CoGroupedRDD.scala:156) >>>> >>>> >>>> >>>> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$4.apply(CoGroupedRDD.scala:154) >>>> >>>> >>>> >>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >>>> >>>> >>>> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >>>> >>>> >>>> org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:154) >>>> >>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) >>>> >>>> org.apache.spark.rdd.RDD.iterator(RDD.scala:229) >>>> >>>> >>>> org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31) >>>> >>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) >>>> >>>> org.apache.spark.rdd.RDD.iterator(RDD.scala:229) >>>> >>>> >>>> >>>> org.apache.spark.rdd.FlatMappedValuesRDD.compute(FlatMappedValuesRDD.scala:31) >>>> >>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) >>>> >>>> org.apache.spark.rdd.RDD.iterator(RDD.scala:229) >>>> >>>> >>>> org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31) >>>> >>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) >>>> >>>> org.apache.spark.rdd.RDD.iterator(RDD.scala:229) >>>> >>>> >>>> >>>> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$2.apply(CoGroupedRDD.scala:126) >>>> >>>> >>>> >>>> org.apache.spark.rdd.CoGroupedRDD$$anonfun$compute$2.apply(CoGroupedRDD.scala:123) >>>> >>>> >>>> >>>> scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772) >>>> >>>> >>>> >>>> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) >>>> >>>> >>>> scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108) >>>> >>>> >>>> >>>> scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771) >>>> >>>> >>>> org.apache.spark.rdd.CoGroupedRDD.compute(CoGroupedRDD.scala:123) >>>> >>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) >>>> >>>> org.apache.spark.rdd.RDD.iterator(RDD.scala:229) >>>> >>>> >>>> org.apache.spark.rdd.MappedValuesRDD.compute(MappedValuesRDD.scala:31) >>>> >>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) >>>> >>>> org.apache.spark.rdd.RDD.iterator(RDD.scala:229) >>>> >>>> >>>> >>>> org.apache.spark.rdd.FlatMappedValuesRDD.compute(FlatMappedValuesRDD.scala:31) >>>> >>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) >>>> >>>> org.apache.spark.rdd.RDD.iterator(RDD.scala:229) >>>> >>>> >>>> org.apache.spark.rdd.FlatMappedRDD.compute(FlatMappedRDD.scala:33) >>>> >>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) >>>> >>>> org.apache.spark.rdd.RDD.iterator(RDD.scala:229) >>>> >>>> >>>> >>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:158) >>>> >>>> >>>> >>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99) >>>> >>>> org.apache.spark.scheduler.Task.run(Task.scala:51) >>>> >>>> >>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:183) >>>> >>>> >>>> >>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) >>>> >>>> >>>> >>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) >>>> >>>> java.lang.Thread.run(Thread.java:744) >>>> >>>> Driver stacktrace: >>>> >>>> at org.apache.spark.scheduler.DAGScheduler.org >>>> >>>> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1044) >>>> >>>> at >>>> >>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1028) >>>> >>>> at >>>> >>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1026) >>>> >>>> at >>>> >>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >>>> >>>> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >>>> >>>> at >>>> >>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1026) >>>> >>>> at >>>> >>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634) >>>> >>>> at >>>> >>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:634) >>>> >>>> at scala.Option.foreach(Option.scala:236) >>>> >>>> at >>>> >>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:634) >>>> >>>> at >>>> >>>> org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1229) >>>> >>>> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) >>>> >>>> at akka.actor.ActorCell.invoke(ActorCell.scala:456) >>>> >>>> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) >>>> >>>> at akka.dispatch.Mailbox.run(Mailbox.scala:219) >>>> >>>> at >>>> >>>> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) >>>> >>>> at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) >>>> >>>> at >>>> >>>> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) >>>> >>>> at >>>> scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) >>>> >>>> at >>>> >>>> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) >>>> >>>> >>>> On Tue, Aug 5, 2014 at 5:59 PM, Debasish Das <debasish.da...@gmail.com> >>>> wrote: >>>> >>>> > Hi Xiangrui, >>>> > >>>> > I used your idea and kept a cherry picked version of ALS.scala in my >>>> > application and call it ALSQp.scala...this is a OK workaround for now >>>> till >>>> > a version adds up to master for example... >>>> > >>>> > For the bug with userClassPathFirst, looks like Koert already found >>>> this >>>> > issue in the following JIRA: >>>> > >>>> > https://issues.apache.org/jira/browse/SPARK-1863 >>>> > >>>> > By the way the userClassPathFirst feature is very useful since I am >>>> sure >>>> > the deployed version of spark on a production cluster will always be >>>> the >>>> > last stable (core at 1.0.1 in my case) and people would like to deploy >>>> > SNAPSHOT versions of libraries that build on top of spark core (mllib, >>>> > streaming etc)... >>>> > >>>> > Another way is to have a build option that deploys only the core and >>>> not >>>> > the libraries built upon core... >>>> > >>>> > Do we have an option like that in make-distribution script ? >>>> > >>>> > Thanks. >>>> > Deb >>>> > >>>> > >>>> > On Tue, Aug 5, 2014 at 10:37 AM, Xiangrui Meng <men...@gmail.com> >>>> wrote: >>>> > >>>> >> If you cannot change the Spark jar deployed on the cluster, an easy >>>> >> solution would be renaming ALS in your jar. If userClassPathFirst >>>> >> doesn't work, could you create a JIRA and attach the log? Thanks! >>>> >> -Xiangrui >>>> >> >>>> >> On Tue, Aug 5, 2014 at 9:10 AM, Debasish Das < >>>> debasish.da...@gmail.com> >>>> >> wrote: >>>> >> > I created the assembly file but still it wants to pick the mllib >>>> from >>>> >> the >>>> >> > cluster: >>>> >> > >>>> >> > jar tf ./target/ml-0.0.1-SNAPSHOT-jar-with-dependencies.jar | grep >>>> >> > QuadraticMinimizer >>>> >> > >>>> >> > >>>> org/apache/spark/mllib/optimization/QuadraticMinimizer$$anon$1.class >>>> >> > >>>> >> > /Users/v606014/dist-1.0.1/bin/spark-submit --master >>>> >> > spark://TUSCA09LMLVT00C.local:7077 --class ALSDriver >>>> >> > ./target/ml-0.0.1-SNAPSHOT-jar-with-dependencies.jar inputPath >>>> >> outputPath >>>> >> > >>>> >> > Exception in thread "main" java.lang.NoSuchMethodError: >>>> >> > >>>> >> >>>> org.apache.spark.mllib.recommendation.ALS.setLambdaL1(D)Lorg/apache/spark/mllib/recommendation/ALS; >>>> >> > >>>> >> > Now if I force it to use the jar that I gave using >>>> >> > spark.files.userClassPathFirst, then it fails on some serialization >>>> >> > issues... >>>> >> > >>>> >> > A simple solution is to cherry pick the files I need from spark >>>> branch >>>> >> to >>>> >> > the application branch but I am not sure that's the right thing to >>>> do... >>>> >> > >>>> >> > The way userClassPathFirst is behaving, there might be bugs in >>>> it... >>>> >> > >>>> >> > Any suggestions will be appreciated.... >>>> >> > >>>> >> > Thanks. >>>> >> > Deb >>>> >> > >>>> >> > >>>> >> > On Sat, Aug 2, 2014 at 11:12 AM, Xiangrui Meng <men...@gmail.com> >>>> >> wrote: >>>> >> >> >>>> >> >> Yes, that should work. spark-mllib-1.1.0 should be compatible with >>>> >> >> spark-core-1.0.1. >>>> >> >> >>>> >> >> On Sat, Aug 2, 2014 at 10:54 AM, Debasish Das < >>>> >> debasish.da...@gmail.com> >>>> >> >> wrote: >>>> >> >> > Let me try it... >>>> >> >> > >>>> >> >> > Will this be fixed if I generate a assembly file with >>>> mllib-1.1.0 >>>> >> >> > SNAPSHOT >>>> >> >> > jar and other dependencies with the rest of the application >>>> code ? >>>> >> >> > >>>> >> >> > >>>> >> >> > >>>> >> >> > On Sat, Aug 2, 2014 at 10:46 AM, Xiangrui Meng < >>>> men...@gmail.com> >>>> >> wrote: >>>> >> >> >> >>>> >> >> >> You can try enabling "spark.files.userClassPathFirst". But I'm >>>> not >>>> >> >> >> sure whether it could solve your problem. -Xiangrui >>>> >> >> >> >>>> >> >> >> On Sat, Aug 2, 2014 at 10:13 AM, Debasish Das >>>> >> >> >> <debasish.da...@gmail.com> >>>> >> >> >> wrote: >>>> >> >> >> > Hi, >>>> >> >> >> > >>>> >> >> >> > I have deployed spark stable 1.0.1 on the cluster but I have >>>> new >>>> >> code >>>> >> >> >> > that >>>> >> >> >> > I added in mllib-1.1.0-SNAPSHOT. >>>> >> >> >> > >>>> >> >> >> > I am trying to access the new code using spark-submit as >>>> follows: >>>> >> >> >> > >>>> >> >> >> > spark-job --class >>>> com.verizon.bda.mllib.recommendation.ALSDriver >>>> >> >> >> > --executor-memory 16g --total-executor-cores 16 --jars >>>> >> >> >> > spark-mllib_2.10-1.1.0-SNAPSHOT.jar,scopt_2.10-3.2.0.jar >>>> >> >> >> > sag-core-0.0.1-SNAPSHOT.jar --rank 25 --numIterations 10 >>>> --lambda >>>> >> 1.0 >>>> >> >> >> > --qpProblem 2 inputPath outputPath >>>> >> >> >> > >>>> >> >> >> > I can see the jars are getting added to httpServer as >>>> expected: >>>> >> >> >> > >>>> >> >> >> > 14/08/02 12:50:04 INFO SparkContext: Added JAR >>>> >> >> >> > >>>> >> file:/vzhome/v606014/spark-glm/spark-mllib_2.10-1.1.0-SNAPSHOT.jar at >>>> >> >> >> > >>>> >> http://10.145.84.20:37798/jars/spark-mllib_2.10-1.1.0-SNAPSHOT.jar >>>> >> >> >> > with >>>> >> >> >> > timestamp 1406998204236 >>>> >> >> >> > >>>> >> >> >> > 14/08/02 12:50:04 INFO SparkContext: Added JAR >>>> >> >> >> > file:/vzhome/v606014/spark-glm/scopt_2.10-3.2.0.jar at >>>> >> >> >> > http://10.145.84.20:37798/jars/scopt_2.10-3.2.0.jar with >>>> >> timestamp >>>> >> >> >> > 1406998204237 >>>> >> >> >> > >>>> >> >> >> > 14/08/02 12:50:04 INFO SparkContext: Added JAR >>>> >> >> >> > file:/vzhome/v606014/spark-glm/sag-core-0.0.1-SNAPSHOT.jar at >>>> >> >> >> > http://10.145.84.20:37798/jars/sag-core-0.0.1-SNAPSHOT.jar >>>> with >>>> >> >> >> > timestamp >>>> >> >> >> > 1406998204238 >>>> >> >> >> > >>>> >> >> >> > But the job still can't access code form mllib-1.1.0 >>>> >> SNAPSHOT.jar...I >>>> >> >> >> > think >>>> >> >> >> > it's picking up the mllib from cluster which is at 1.0.1... >>>> >> >> >> > >>>> >> >> >> > Please help. I will ask for a PR tomorrow but internally we >>>> want >>>> >> to >>>> >> >> >> > generate results from the new code. >>>> >> >> >> > >>>> >> >> >> > Thanks. >>>> >> >> >> > >>>> >> >> >> > Deb >>>> >> >> > >>>> >> >> > >>>> >> > >>>> >> > >>>> >> >>>> > >>>> > >>>> >>> >> >