So as a related question, is there any reason the settings in SQLConf
aren't read from the spark context's conf?  I understand why the sql conf
is mutable, but it's not particularly user friendly to have most spark
configuration set via e.g. defaults.conf or --properties-file, but for
spark sql to ignore those.

On Mon, Sep 22, 2014 at 4:34 PM, Cody Koeninger <c...@koeninger.org> wrote:

> After commit 8856c3d8 switched from gzip to snappy as default parquet
> compression codec, I'm seeing the following when trying to read parquet
> files saved using the new default (same schema and roughly same size as
> files that were previously working):
>
> java.lang.OutOfMemoryError: Direct buffer memory
>         java.nio.Bits.reserveMemory(Bits.java:658)
>         java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:123)
>         java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:306)
>
> parquet.hadoop.codec.SnappyDecompressor.setInput(SnappyDecompressor.java:99)
>
> parquet.hadoop.codec.NonBlockedDecompressorStream.read(NonBlockedDecompressorStream.java:43)
>         java.io.DataInputStream.readFully(DataInputStream.java:195)
>         java.io.DataInputStream.readFully(DataInputStream.java:169)
>
> parquet.bytes.BytesInput$StreamBytesInput.toByteArray(BytesInput.java:201)
>
> parquet.column.impl.ColumnReaderImpl.readPage(ColumnReaderImpl.java:521)
>
> parquet.column.impl.ColumnReaderImpl.checkRead(ColumnReaderImpl.java:493)
>
> parquet.column.impl.ColumnReaderImpl.consume(ColumnReaderImpl.java:546)
>
> parquet.column.impl.ColumnReaderImpl.<init>(ColumnReaderImpl.java:339)
>
> parquet.column.impl.ColumnReadStoreImpl.newMemColumnReader(ColumnReadStoreImpl.java:63)
>
> parquet.column.impl.ColumnReadStoreImpl.getColumnReader(ColumnReadStoreImpl.java:58)
>
> parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:265)
>         parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:60)
>         parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:74)
>
> parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:110)
>
> parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:172)
>
> parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:130)
>
> org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:139)
>
> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
>         scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
>         scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:388)
>         scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
>         scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
>         scala.collection.Iterator$class.isEmpty(Iterator.scala:256)
>         scala.collection.AbstractIterator.isEmpty(Iterator.scala:1157)
>
> org.apache.spark.sql.execution.ExistingRdd$$anonfun$productToRowRdd$1.apply(basicOperators.scala:220)
>
> org.apache.spark.sql.execution.ExistingRdd$$anonfun$productToRowRdd$1.apply(basicOperators.scala:219)
>         org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596)
>         org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596)
>
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
>         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
>         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
>         org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:62)
>         org.apache.spark.scheduler.Task.run(Task.scala:54)
>
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:181)
>
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>         java.lang.Thread.run(Thread.java:722)
>
>
>

Reply via email to