So as a related question, is there any reason the settings in SQLConf aren't read from the spark context's conf? I understand why the sql conf is mutable, but it's not particularly user friendly to have most spark configuration set via e.g. defaults.conf or --properties-file, but for spark sql to ignore those.
On Mon, Sep 22, 2014 at 4:34 PM, Cody Koeninger <c...@koeninger.org> wrote: > After commit 8856c3d8 switched from gzip to snappy as default parquet > compression codec, I'm seeing the following when trying to read parquet > files saved using the new default (same schema and roughly same size as > files that were previously working): > > java.lang.OutOfMemoryError: Direct buffer memory > java.nio.Bits.reserveMemory(Bits.java:658) > java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:123) > java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:306) > > parquet.hadoop.codec.SnappyDecompressor.setInput(SnappyDecompressor.java:99) > > parquet.hadoop.codec.NonBlockedDecompressorStream.read(NonBlockedDecompressorStream.java:43) > java.io.DataInputStream.readFully(DataInputStream.java:195) > java.io.DataInputStream.readFully(DataInputStream.java:169) > > parquet.bytes.BytesInput$StreamBytesInput.toByteArray(BytesInput.java:201) > > parquet.column.impl.ColumnReaderImpl.readPage(ColumnReaderImpl.java:521) > > parquet.column.impl.ColumnReaderImpl.checkRead(ColumnReaderImpl.java:493) > > parquet.column.impl.ColumnReaderImpl.consume(ColumnReaderImpl.java:546) > > parquet.column.impl.ColumnReaderImpl.<init>(ColumnReaderImpl.java:339) > > parquet.column.impl.ColumnReadStoreImpl.newMemColumnReader(ColumnReadStoreImpl.java:63) > > parquet.column.impl.ColumnReadStoreImpl.getColumnReader(ColumnReadStoreImpl.java:58) > > parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:265) > parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:60) > parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:74) > > parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:110) > > parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:172) > > parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:130) > > org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:139) > > org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39) > scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) > scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:388) > scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) > scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) > scala.collection.Iterator$class.isEmpty(Iterator.scala:256) > scala.collection.AbstractIterator.isEmpty(Iterator.scala:1157) > > org.apache.spark.sql.execution.ExistingRdd$$anonfun$productToRowRdd$1.apply(basicOperators.scala:220) > > org.apache.spark.sql.execution.ExistingRdd$$anonfun$productToRowRdd$1.apply(basicOperators.scala:219) > org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596) > org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596) > > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) > org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) > org.apache.spark.rdd.RDD.iterator(RDD.scala:229) > org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:62) > org.apache.spark.scheduler.Task.run(Task.scala:54) > > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:181) > > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > java.lang.Thread.run(Thread.java:722) > > >