Sort of. Your example works, but could you do a mere
ds.foreachPartition(println)? Why not? What should I even see the Java
version?
scala> val ds = spark.range(10)
ds: org.apache.spark.sql.Dataset[Long] = [id: bigint]
scala> ds.foreachPartition(println)
<console>:26: error: overloaded method value foreachPartition with alternatives:
(func: org.apache.spark.api.java.function.ForeachPartitionFunction[Long])Unit
<and>
(f: Iterator[Long] => Unit)Unit
cannot be applied to (Unit)
ds.foreachPartition(println)
^
Pozdrawiam,
Jacek Laskowski
----
https://medium.com/@jaceklaskowski/
Mastering Apache Spark http://bit.ly/mastering-apache-spark
Follow me at https://twitter.com/jaceklaskowski
On Tue, Jul 5, 2016 at 3:32 PM, Sean Owen <[email protected]> wrote:
> Do you not mean ds.foreachPartition(_.foreach(println)) or similar?
>
> On Tue, Jul 5, 2016 at 2:22 PM, Jacek Laskowski <[email protected]> wrote:
>> Hi,
>>
>> It's with the master built today. Why can't I call
>> ds.foreachPartition(println)? Is using type annotation the only way to
>> go forward? I'd be so sad if that's the case.
>>
>> scala> ds.foreachPartition(println)
>> <console>:28: error: overloaded method value foreachPartition with
>> alternatives:
>> (func:
>> org.apache.spark.api.java.function.ForeachPartitionFunction[Record])Unit
>> <and>
>> (f: Iterator[Record] => Unit)Unit
>> cannot be applied to (Unit)
>> ds.foreachPartition(println)
>> ^
>>
>> scala> sc.version
>> res9: String = 2.0.0-SNAPSHOT
>>
>> Pozdrawiam,
>> Jacek Laskowski
>> ----
>> https://medium.com/@jaceklaskowski/
>> Mastering Apache Spark http://bit.ly/mastering-apache-spark
>> Follow me at https://twitter.com/jaceklaskowski
>>
>> ---------------------------------------------------------------------
>> To unsubscribe e-mail: [email protected]
>>
---------------------------------------------------------------------
To unsubscribe e-mail: [email protected]