Hi all,

We just upgraded our Spark from 1.6.2 to 2.1.0.

Our Spark application is started by spark-submit with config of
`--executor-memory 35G` in standalone model, but the actual use of memory up
to 65G after a full gc(jmap -histo:live $pid) as follow:

test@c6 ~ $ ps aux | grep CoarseGrainedExecutorBackend
test      181941  181 34.7 94665384 68836752 ?   Sl   09:25 711:21
/home/test/service/jdk/bin/java -cp
/home/test/service/hadoop/share/hadoop/common/hadoop-lzo-0.4.20-SNAPSHOT.jar:/home/test/service/hadoop/share/hadoop/common/hadoop-lzo-0.4.20-SNAPSHOT.jar:/home/test/service/spark/conf/:/home/test/service/spark/jars/*:/home/test/service/hadoop/etc/hadoop/
-Xmx35840M -Dspark.driver.port=47781 -XX:+PrintGCDetails
-XX:+PrintGCDateStamps -Xloggc:./gc.log -verbose:gc
org.apache.spark.executor.CoarseGrainedExecutorBackend --driver-url
spark://coarsegrainedschedu...@xxx.xxx.xxx.xxx:47781 --executor-id 1
--hostname test-192 --cores 36 --app-id app-20170122092509-0017 --worker-url
spark://Worker@test-192:33890

Our Spark jobs are all sql.

The exceed memory looks like off-heap memory, but the default value of
`spark.memory.offHeap.enabled` is `false`.

We didn't find the problem in Spark 1.6.x, what causes this in Spark 2.1.0?

Any help is greatly appreicated!

Best,
Stan



--
View this message in context: 
http://apache-spark-developers-list.1001551.n3.nabble.com/Executors-exceed-maximum-memory-defined-with-executor-memory-in-Spark-2-1-0-tp20697.html
Sent from the Apache Spark Developers List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe e-mail: dev-unsubscr...@spark.apache.org

Reply via email to