Can you explain in more detail what you mean by "distribute Kafka topics among different instances of same consumer group"?
If you're trying to run multiple streams using the same consumer group, it's already documented that you shouldn't do that. On Thu, Jun 8, 2017 at 12:43 AM, Rastogi, Pankaj <pankaj.rast...@verizon.com> wrote: > Hi, > I have been trying to distribute Kafka topics among different instances of > same consumer group. I am using KafkaDirectStream API for creating DStreams. > After the second consumer group comes up, Kafka does partition rebalance and > then Spark driver of the first consumer dies with the following exception: > > java.lang.IllegalStateException: No current assignment for partition > myTopic_5-0 > at > org.apache.kafka.clients.consumer.internals.SubscriptionState.assignedState(SubscriptionState.java:264) > at > org.apache.kafka.clients.consumer.internals.SubscriptionState.needOffsetReset(SubscriptionState.java:336) > at > org.apache.kafka.clients.consumer.KafkaConsumer.seekToEnd(KafkaConsumer.java:1236) > at > org.apache.spark.streaming.kafka010.DirectKafkaInputDStream.latestOffsets(DirectKafkaInputDStream.scala:197) > at > org.apache.spark.streaming.kafka010.DirectKafkaInputDStream.compute(DirectKafkaInputDStream.scala:214) > at > org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341) > at > org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341) > at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57) > at > org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:340) > at > org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:340) > at > org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:415) > at > org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:335) > at > org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:333) > at scala.Option.orElse(Option.scala:257) > at > org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:330) > at > org.apache.spark.streaming.dstream.TransformedDStream$$anonfun$6.apply(TransformedDStream.scala:42) > at > org.apache.spark.streaming.dstream.TransformedDStream$$anonfun$6.apply(TransformedDStream.scala:42) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > at scala.collection.immutable.List.foreach(List.scala:318) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) > at scala.collection.AbstractTraversable.map(Traversable.scala:105) > at > org.apache.spark.streaming.dstream.TransformedDStream.compute(TransformedDStream.scala:42) > at > org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341) > at > org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341) > at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57) > at > org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:340) > at > org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:340) > at > org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:415) > at > org.apache.spark.streaming.dstream.TransformedDStream.createRDDWithLocalProperties(TransformedDStream.scala:65) > at > org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:335) > at > org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:333) > at scala.Option.orElse(Option.scala:257) > at > org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:330) > at > org.apache.spark.streaming.dstream.ForEachDStream.generateJob(ForEachDStream.scala:48) > at > org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:117) > at > org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:116) > at > scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251) > at > scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251) > at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105) > at > org.apache.spark.streaming.DStreamGraph.generateJobs(DStreamGraph.scala:116) > at > org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:249) > at > org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:247) > at scala.util.Try$.apply(Try.scala:161) > at > org.apache.spark.streaming.scheduler.JobGenerator.generateJobs(JobGenerator.scala:247) > at > org.apache.spark.streaming.scheduler.JobGenerator.org$apache$spark$streaming$scheduler$JobGenerator$$processEvent(JobGenerator.scala:183) > at > org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:89) > at > org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:88) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > > I see that there is Spark ticket opened with the same > issue(https://issues.apache.org/jira/browse/SPARK-19547) but it has been > marked as INVALID. Can someone explain why this ticket is marked INVALID. > > Thanks, > Pankaj --------------------------------------------------------------------- To unsubscribe e-mail: dev-unsubscr...@spark.apache.org