I have a question related to Permanent UDF for spark enabled hive support. When we do create function, this is registered with hive via spark-sql>create function customfun as 'org.apache.hadoop.hive.ql.udf.generic.GenericUDFLastDay' using jar 'hdfs:///tmp/hive-exec.jar'; call stack: org.apache.spark.sql.hive.client.HiveClientImpl#createFunction org.apache.spark.sql.hive.HiveExternalCatalog#createFunction org.apache.spark.sql.catalyst.catalog.SessionCatalog#createFunction org.apache.spark.sql.execution.command.CreateFunctionCommand#run
but when we call a registered UDF, we do ADD JAR call to hive spark-sql> select customfun('2015-08-22'); call stack: org.apache.spark.sql.hive.client.HiveClientImpl#addJar org.apache.spark.sql.hive.HiveSessionResourceLoader#addJar org.apache.spark.sql.internal.SessionResourceLoader#loadResource org.apache.spark.sql.catalyst.catalog.SessionCatalog#loadFunctionResources org.apache.spark.sql.catalyst.catalog.SessionCatalog#lookupFunction so is the ADD JAR call to hive necessary when we invoke a already registered UDF.? as i see if we follow current code, 1. hive can lookup already registered UDFs without explicit add jar call from spark , Refer https://cwiki.apache.org/confluence/display/Hive/HivePlugins fixed via https://issues.apache.org/jira/browse/HIVE-6380 ( When the function is referenced for the first time by a Hive session, these resources will be added to the environment. ) 2. We cannot have across session as the new session again need to do add jar internally on UDF call, which will fail as caller neeed to have a admin role set ( hive requires add jar to be run only via admin role ) Please correct me if i am wrong, can we avoid add jar when we invoke a registered UDF.? any side-effects if i modify this flow.?