Splendid
The configurations below can be used with k8s deployments of Spark. Spark
applications running on k8s can utilize these configurations to seamlessly
access data stored in Google Cloud Storage (GCS) and Amazon S3.
For Google GCS we may have
spark_config_gcs = {
"spark.kubernetes.authenticate.driver.serviceAccountName":
"service_account_name",
"spark.hadoop.fs.gs.impl":
"com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem",
"spark.hadoop.google.cloud.auth.service.account.enable": "true",
"spark.hadoop.google.cloud.auth.service.account.json.keyfile":
"/path/to/keyfile.json",
}
For Amazon S3 similar
spark_config_s3 = {
"spark.kubernetes.authenticate.driver.serviceAccountName":
"service_account_name",
"spark.hadoop.fs.s3a.impl": "org.apache.hadoop.fs.s3a.S3AFileSystem",
"spark.hadoop.fs.s3a.access.key": "s3_access_key",
"spark.hadoop.fs.s3a.secret.key": "secret_key",
}
To implement these configurations and enable Spark applications to interact
with GCS and S3, I guess we can approach it this way
1) Spark Repository Integration: These configurations need to be added to
the Spark repository as part of the supported configuration options for k8s
deployments.
2) Configuration Settings: Users need to specify these configurations when
submitting Spark applications to a Kubernetes cluster. They can include
these configurations in the Spark application code or pass them as
command-line arguments or environment variables during application
submission.
HTH
Mich Talebzadeh,
Technologist | Solutions Architect | Data Engineer | Generative AI
London
United Kingdom
view my Linkedin profile
<https://www.linkedin.com/in/mich-talebzadeh-ph-d-5205b2/>
https://en.everybodywiki.com/Mich_Talebzadeh
*Disclaimer:* The information provided is correct to the best of my
knowledge but of course cannot be guaranteed . It is essential to note
that, as with any advice, quote "one test result is worth one-thousand
expert opinions (Werner <https://en.wikipedia.org/wiki/Wernher_von_Braun>Von
Braun <https://en.wikipedia.org/wiki/Wernher_von_Braun>)".
On Sun, 7 Apr 2024 at 13:31, Vakaris Baškirov <[email protected]>
wrote:
> There is an IBM shuffle service plugin that supports S3
> https://github.com/IBM/spark-s3-shuffle
>
> Though I would think a feature like this could be a part of the main Spark
> repo. Trino already has out-of-box support for s3 exchange (shuffle) and
> it's very useful.
>
> Vakaris
>
> On Sun, Apr 7, 2024 at 12:27 PM Mich Talebzadeh <[email protected]>
> wrote:
>
>>
>> Thanks for your suggestion that I take it as a workaround. Whilst this
>> workaround can potentially address storage allocation issues, I was more
>> interested in exploring solutions that offer a more seamless integration
>> with large distributed file systems like HDFS, GCS, or S3. This would
>> ensure better performance and scalability for handling larger datasets
>> efficiently.
>>
>>
>> Mich Talebzadeh,
>> Technologist | Solutions Architect | Data Engineer | Generative AI
>> London
>> United Kingdom
>>
>>
>> view my Linkedin profile
>> <https://www.linkedin.com/in/mich-talebzadeh-ph-d-5205b2/>
>>
>>
>> https://en.everybodywiki.com/Mich_Talebzadeh
>>
>>
>>
>> *Disclaimer:* The information provided is correct to the best of my
>> knowledge but of course cannot be guaranteed . It is essential to note
>> that, as with any advice, quote "one test result is worth one-thousand
>> expert opinions (Werner
>> <https://en.wikipedia.org/wiki/Wernher_von_Braun>Von Braun
>> <https://en.wikipedia.org/wiki/Wernher_von_Braun>)".
>>
>>
>> On Sat, 6 Apr 2024 at 21:28, Bjørn Jørgensen <[email protected]>
>> wrote:
>>
>>> You can make a PVC on K8S call it 300GB
>>>
>>> make a folder in yours dockerfile
>>> WORKDIR /opt/spark/work-dir
>>> RUN chmod g+w /opt/spark/work-dir
>>>
>>> start spark with adding this
>>>
>>> .config("spark.kubernetes.driver.volumes.persistentVolumeClaim.300gb.options.claimName",
>>> "300gb") \
>>>
>>> .config("spark.kubernetes.driver.volumes.persistentVolumeClaim.300gb.mount.path",
>>> "/opt/spark/work-dir") \
>>>
>>> .config("spark.kubernetes.driver.volumes.persistentVolumeClaim.300gb.mount.readOnly",
>>> "False") \
>>>
>>> .config("spark.kubernetes.executor.volumes.persistentVolumeClaim.300gb.options.claimName",
>>> "300gb") \
>>>
>>> .config("spark.kubernetes.executor.volumes.persistentVolumeClaim.300gb.mount.path",
>>> "/opt/spark/work-dir") \
>>>
>>> .config("spark.kubernetes.executor.volumes.persistentVolumeClaim.300gb.mount.readOnly",
>>> "False") \
>>> .config("spark.local.dir", "/opt/spark/work-dir")
>>>
>>>
>>>
>>>
>>> lør. 6. apr. 2024 kl. 15:45 skrev Mich Talebzadeh <
>>> [email protected]>:
>>>
>>>> I have seen some older references for shuffle service for k8s,
>>>> although it is not clear they are talking about a generic shuffle
>>>> service for k8s.
>>>>
>>>> Anyhow with the advent of genai and the need to allow for a larger
>>>> volume of data, I was wondering if there has been any more work on
>>>> this matter. Specifically larger and scalable file systems like HDFS,
>>>> GCS , S3 etc, offer significantly larger storage capacity than local
>>>> disks on individual worker nodes in a k8s cluster, thus allowing
>>>> handling much larger datasets more efficiently. Also the degree of
>>>> parallelism and fault tolerance with these files systems come into
>>>> it. I will be interested in hearing more about any progress on this.
>>>>
>>>> Thanks
>>>> .
>>>>
>>>> Mich Talebzadeh,
>>>>
>>>> Technologist | Solutions Architect | Data Engineer | Generative AI
>>>>
>>>> London
>>>> United Kingdom
>>>>
>>>>
>>>> view my Linkedin profile
>>>>
>>>>
>>>> https://en.everybodywiki.com/Mich_Talebzadeh
>>>>
>>>>
>>>>
>>>> Disclaimer: The information provided is correct to the best of my
>>>> knowledge but of course cannot be guaranteed . It is essential to note
>>>> that, as with any advice, quote "one test result is worth one-thousand
>>>> expert opinions (Werner Von Braun)".
>>>>
>>>> ---------------------------------------------------------------------
>>>> To unsubscribe e-mail: [email protected]
>>>>
>>>>
>>>
>>> --
>>> Bjørn Jørgensen
>>> Vestre Aspehaug 4, 6010 Ålesund
>>> Norge
>>>
>>> +47 480 94 297
>>>
>>