Hello Spark Developers, While trying to use the takeOrdered method of RDD in the following way:
object AceScoreOrdering extends Ordering[Record] { def compare(a:Record, b:Record) = a.score.ace_score compare b.score.ace_score } val collected = dataset.takeOrdered(topN)(AceScoreOrdering) I got this error: 14/02/22 09:11:53 ERROR actor.OneForOneStrategy: scala.collection.immutable.Nil$ cannot be cast to org.apache.spark.util.BoundedPriorityQueue java.lang.ClassCastException: scala.collection.immutable.Nil$ cannot be cast to org.apache.spark.util.BoundedPriorityQueue at org.apache.spark.rdd.RDD$$anonfun$top$2.apply(RDD.scala:941) at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:727) at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:724) at org.apache.spark.scheduler.JobWaiter.taskSucceeded(JobWaiter.scala:56) at org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:843) at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:598) at org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at akka.actor.ActorCell.invoke(ActorCell.scala:456) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at akka.dispatch.Mailbox.run(Mailbox.scala:219) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) The error happens in this piece of code ( this is from today's TIP on github) : def top(num: Int)(implicit ord: Ordering[T]): Array[T] = { mapPartitions { items => val queue = new BoundedPriorityQueue[T](num) queue ++= items Iterator.single(queue) }.reduce { (queue1, queue2) => queue1 ++= queue2 queue1 }.toArray.sorted(ord.reverse) } I am not an expert of scala but looks like in case one of the partition returns a completely empty collection ( scala.collection.immutable.Nil ? ) then the system is not able to reduce it to a queue. Now the real question is that I was trying to emulate this behavior with a simple test inside RDDSuite.scala: test("takeOrdered with nil partition") { case class Custom(value: Int) extends Serializable object CustomOrdering extends Ordering[Custom] { def compare(a:Custom, b:Custom) = a.value compare b.value } val nums = Array(Custom(1), Custom(2)) val rdd = sc.makeRDD(nums, 2) val sortedTopK = rdd.takeOrdered(3)(CustomOrdering) assert(sortedTopK.size === 2) assert(sortedTopK === Array(Custom(1), Custom(2))) assert(sortedTopK === nums.sorted(CustomOrdering).take(2)) } But out of no where I get this error: Job aborted: Task not serializable: java.io.NotSerializableException: org.apache.spark.SparkConf org.apache.spark.SparkException: Job aborted: Task not serializable: java.io.NotSerializableException: org.apache.spark.SparkConf at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1017) at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1015) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1015) at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:778) at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:721) at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:551) at org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at akka.actor.ActorCell.invoke(ActorCell.scala:456) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at akka.dispatch.Mailbox.run(Mailbox.scala:219) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) Can someone explain me why do I get SparkConf not serializable error ? out of where ? Thank you for you time Fabrizio -- LinkedIn: http://linkedin.com/in/fmilo Twitter: @fabmilo Github: http://github.com/Mistobaan/ ----------------------- Simplicity, consistency, and repetition - that's how you get through. (Jack Welch) Perfection must be reached by degrees; she requires the slow hand of time (Voltaire) The best way to predict the future is to invent it (Alan Kay)