Russell Alexander Spitzer created TINKERPOP-1271: ----------------------------------------------------
Summary: SparkContext should be restarted if Killed and using Persistent Context Key: TINKERPOP-1271 URL: https://issues.apache.org/jira/browse/TINKERPOP-1271 Project: TinkerPop Issue Type: Bug Components: hadoop Affects Versions: 3.1.2-incubating, 3.2.0-incubating Reporter: Russell Alexander Spitzer If the persisted Spark Context is killed by the user via the Spark UI or is terminated for some other error the Gremlin Console/Server is left with a stopped Spark Context. This could be caught and the spark context recreated. Oddly enough if you simply wait the context will "reset" itself or possible get GC'd out of the system and everything works again. ##Repo {code} gremlin> g.V().count() WARN org.apache.tinkerpop.gremlin.spark.process.computer.SparkGraphComputer - HADOOP_GREMLIN_LIBS is not set -- proceeding regardless ==>6 gremlin> ERROR org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend - Application has been killed. Reason: Master removed our application: KILLED ERROR org.apache.spark.scheduler.TaskSchedulerImpl - Lost executor 0 on 10.150.0.180: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages. // Driver has been killed here via the Master UI gremlin> graph = GraphFactory.open('conf/hadoop/hadoop-gryo.properties') ==>hadoopgraph[gryoinputformat->gryooutputformat] gremlin> g.V().count() WARN org.apache.tinkerpop.gremlin.spark.process.computer.SparkGraphComputer - HADOOP_GREMLIN_LIBS is not set -- proceeding regardless java.lang.IllegalStateException: Cannot call methods on a stopped SparkContext. This stopped SparkContext was created at: org.apache.spark.SparkContext.getOrCreate(SparkContext.scala) org.apache.tinkerpop.gremlin.spark.structure.Spark.create(Spark.java:53) org.apache.tinkerpop.gremlin.spark.structure.io.SparkContextStorage.open(SparkContextStorage.java:60) org.apache.tinkerpop.gremlin.spark.process.computer.SparkGraphComputer.lambda$submitWithExecutor$1(SparkGraphComputer.java:122) java.util.concurrent.CompletableFuture$AsyncSupply.run(CompletableFuture.java:1590) java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) java.lang.Thread.run(Thread.java:745) The currently active SparkContext was created at: org.apache.spark.SparkContext.getOrCreate(SparkContext.scala) org.apache.tinkerpop.gremlin.spark.structure.Spark.create(Spark.java:53) org.apache.tinkerpop.gremlin.spark.structure.io.SparkContextStorage.open(SparkContextStorage.java:60) org.apache.tinkerpop.gremlin.spark.process.computer.SparkGraphComputer.lambda$submitWithExecutor$1(SparkGraphComputer.java:122) java.util.concurrent.CompletableFuture$AsyncSupply.run(CompletableFuture.java:1590) java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) java.lang.Thread.run(Thread.java:745) {code} Full trace from TP {code} at org.apache.spark.SparkContext.org$apache$spark$SparkContext$$assertNotStopped(SparkContext.scala:106) at org.apache.spark.SparkContext$$anonfun$newAPIHadoopRDD$1.apply(SparkContext.scala:1130) at org.apache.spark.SparkContext$$anonfun$newAPIHadoopRDD$1.apply(SparkContext.scala:1129) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) at org.apache.spark.SparkContext.withScope(SparkContext.scala:714) at org.apache.spark.SparkContext.newAPIHadoopRDD(SparkContext.scala:1129) at org.apache.spark.api.java.JavaSparkContext.newAPIHadoopRDD(JavaSparkContext.scala:507) at org.apache.tinkerpop.gremlin.spark.structure.io.InputFormatRDD.readGraphRDD(InputFormatRDD.java:42) at org.apache.tinkerpop.gremlin.spark.process.computer.SparkGraphComputer.lambda$submitWithExecutor$1(SparkGraphComputer.java:195) at java.util.concurrent.CompletableFuture$AsyncSupply.run(CompletableFuture.java:1590) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) {code} If we wait a certain amount of time for some reason everything starts working again {code} ERROR org.apache.spark.rpc.netty.Inbox - Ignoring error org.apache.spark.SparkException: Exiting due to error from cluster scheduler: Master removed our application: KILLED at org.apache.spark.scheduler.TaskSchedulerImpl.error(TaskSchedulerImpl.scala:438) at org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend.dead(SparkDeploySchedulerBackend.scala:124) at org.apache.spark.deploy.client.AppClient$ClientEndpoint.markDead(AppClient.scala:264) at org.apache.spark.deploy.client.AppClient$ClientEndpoint$$anonfun$receive$1.applyOrElse(AppClient.scala:172) at org.apache.spark.rpc.netty.Inbox$$anonfun$process$1.apply$mcV$sp(Inbox.scala:116) at org.apache.spark.rpc.netty.Inbox.safelyCall(Inbox.scala:204) at org.apache.spark.rpc.netty.Inbox.process(Inbox.scala:100) at org.apache.spark.rpc.netty.Dispatcher$MessageLoop.run(Dispatcher.scala:215) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) WARN org.apache.spark.rpc.netty.NettyRpcEnv - Ignored message: true WARN org.apache.spark.deploy.client.AppClient$ClientEndpoint - Connection to rspitzer-rmbp15.local:7077 failed; waiting for master to reconnect... WARN org.apache.spark.deploy.client.AppClient$ClientEndpoint - Connection to rspitzer-rmbp15.local:7077 failed; waiting for master to reconnect... gremlin> g.V().count() WARN org.apache.tinkerpop.gremlin.spark.process.computer.SparkGraphComputer - HADOOP_GREMLIN_LIBS is not set -- proceeding regardless ==>6 {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332)