Hi all,

I am currently doing the integration of anomaly detection feature for ML. I
have a problem of choosing the best accuracy measure for the model. I can
get the confusion matrix which consists of true positives, true negatives,
false positives and false negatives. There are few different measures such
as sensitivity, accuracy, F1 score, etc. So what will be the best measure
to give as the model accuracy for anomaly detection model.

[1] <https://en.wikipedia.org/wiki/Sensitivity_and_specificity>Some details
about those measures.

Terminology and derivations
from a confusion matrix <https://en.wikipedia.org/wiki/Confusion_matrix> true
positive (TP)eqv. with hittrue negative (TN)eqv. with correct rejectionfalse
positive (FP)eqv. with false alarm
<https://en.wikipedia.org/wiki/False_alarm>, Type I error
<https://en.wikipedia.org/wiki/Type_I_error>false negative (FN)eqv. with
miss, Type II error <https://en.wikipedia.org/wiki/Type_II_error>
------------------------------
sensitivity <https://en.wikipedia.org/wiki/Sensitivity_%28test%29> or true
positive rate (TPR)eqv. with hit rate
<https://en.wikipedia.org/wiki/Hit_rate>, recall
<https://en.wikipedia.org/wiki/Information_retrieval#Recall>[image:
\mathit{TPR} = \mathit{TP} / P = \mathit{TP} / (\mathit{TP}+\mathit{FN})]
specificity <https://en.wikipedia.org/wiki/Specificity_%28tests%29> (SPC)
or true negative rate[image: \mathit{SPC} = \mathit{TN} / N = \mathit{TN} /
(\mathit{TN}+\mathit{FP})]precision
<https://en.wikipedia.org/wiki/Information_retrieval#Precision> or positive
predictive value <https://en.wikipedia.org/wiki/Positive_predictive_value>
(PPV)[image: \mathit{PPV} = \mathit{TP} / (\mathit{TP} + \mathit{FP})]negative
predictive value <https://en.wikipedia.org/wiki/Negative_predictive_value>
(NPV)[image: \mathit{NPV} = \mathit{TN} / (\mathit{TN} + \mathit{FN})]
fall-out <https://en.wikipedia.org/wiki/Information_retrieval#Fall-out>
or false
positive rate <https://en.wikipedia.org/wiki/False_positive_rate> (FPR)[image:
\mathit{FPR} = \mathit{FP} / N = \mathit{FP} / (\mathit{FP} + \mathit{TN})
= 1-\mathit{SPC}]false negative rate
<https://en.wikipedia.org/wiki/False_negative_rate> (FNR)[image:
\mathit{FNR} = \mathit{FN} / (\mathit{TP} + \mathit{FN}) = 1-\mathit{TPR}]false
discovery rate <https://en.wikipedia.org/wiki/False_discovery_rate>
(FDR)[image:
\mathit{FDR} = \mathit{FP} / (\mathit{TP} + \mathit{FP}) = 1 - \mathit{PPV}]
------------------------------
accuracy <https://en.wikipedia.org/wiki/Accuracy> (ACC)[image: \mathit{ACC}
= (\mathit{TP} + \mathit{TN}) / (\mathit{TP} + \mathit{FP} + \mathit{FN} +
\mathit{TN})]F1 score <https://en.wikipedia.org/wiki/F1_score>is the harmonic
mean
<https://en.wikipedia.org/wiki/Harmonic_mean#Harmonic_mean_of_two_numbers>
of precision <https://en.wikipedia.org/wiki/Information_retrieval#Precision>
and sensitivity <https://en.wikipedia.org/wiki/Sensitivity_%28test%29>[image:
\mathit{F1} = 2 \mathit{TP} / (2 \mathit{TP} + \mathit{FP} +
\mathit{FN})]Matthews
correlation coefficient
<https://en.wikipedia.org/wiki/Matthews_correlation_coefficient> (MCC)[image:
\frac{ \mathit{TP} \times \mathit{TN} - \mathit{FP} \times \mathit{FN} }
{\sqrt{ (\mathit{TP}+\mathit{FP}) ( \mathit{TP} + \mathit{FN} ) (
\mathit{TN} + \mathit{FP} ) ( \mathit{TN} + \mathit{FN} ) }
}]Informedness[image:
\mathit{TPR} + \mathit{SPC} - 1]Markedness
<https://en.wikipedia.org/wiki/Markedness>[image: \mathit{PPV} +
\mathit{NPV} - 1]

*Sources: Fawcett (2006) and Powers (2011).*[1]
<https://en.wikipedia.org/wiki/Sensitivity_and_specificity#cite_note-Fawcett2006-1>
[2]
<https://en.wikipedia.org/wiki/Sensitivity_and_specificity#cite_note-Powers2011-2>

Thanks and Regards,
Ashen
-- 
*Ashen Weerathunga*
Software Engineer - Intern
WSO2 Inc.: http://wso2.com
lean.enterprise.middleware

Email: [email protected]
Mobile: +94 716042995 <94716042995>
LinkedIn:
*http://lk.linkedin.com/in/ashenweerathunga
<http://lk.linkedin.com/in/ashenweerathunga>*
_______________________________________________
Dev mailing list
[email protected]
http://wso2.org/cgi-bin/mailman/listinfo/dev

Reply via email to