Hi! I use CentOS 6.7 + Spark 1.5.2 Standalone + Cloudera Hadoop 5.4.8 on the same cluster. I can't use Mesos or Spark on YARN. I decided to try Zeppelin. I tried to use binaries, to build from sources with different parameters. At last, I built version 0.6.0 so: mvn clean package –DskipTests -Pspark-1.5 -Phadoop-2.6 -Pyarn -Ppyspark -Pbuild-distr
But constantly get the error: com.fasterxml.jackson.databind.JsonMappingException: Could not find creator property with name 'id' (in class org.apache.spark.rdd.RDDOperationScope) at [Source: {"id":"0","name":"parallelize"}; line: 1, column: 1] at com.fasterxml.jackson.databind.JsonMappingException.from(JsonMappingException.java:148) at com.fasterxml.jackson.databind.DeserializationContext.mappingException(DeserializationContext.java:843) at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.addBeanProps(BeanDeserializerFactory.java:533) at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.buildBeanDeserializer(BeanDeserializerFactory.java:220) at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.createBeanDeserializer(BeanDeserializerFactory.java:143) at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer2(DeserializerCache.java:409) at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer(DeserializerCache.java:358) at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCache2(DeserializerCache.java:265) at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCacheValueDeserializer(DeserializerCache.java:245) at com.fasterxml.jackson.databind.deser.DeserializerCache.findValueDeserializer(DeserializerCache.java:143) at com.fasterxml.jackson.databind.DeserializationContext.findRootValueDeserializer(DeserializationContext.java:439) at com.fasterxml.jackson.databind.ObjectMapper._findRootDeserializer(ObjectMapper.java:3666) at com.fasterxml.jackson.databind.ObjectMapper._readMapAndClose(ObjectMapper.java:3558) at com.fasterxml.jackson.databind.ObjectMapper.readValue(ObjectMapper.java:2578) at org.apache.spark.rdd.RDDOperationScope$.fromJson(RDDOperationScope.scala:82) at org.apache.spark.rdd.RDD$$anonfun$34.apply(RDD.scala:1603) at org.apache.spark.rdd.RDD$$anonfun$34.apply(RDD.scala:1603) at scala.Option.map(Option.scala:145) at org.apache.spark.rdd.RDD.<init>(RDD.scala:1603) at org.apache.spark.rdd.ParallelCollectionRDD.<init>(ParallelCollectionRDD.scala:85) at org.apache.spark.SparkContext$$anonfun$parallelize$1.apply(SparkContext.scala:725) at org.apache.spark.SparkContext$$anonfun$parallelize$1.apply(SparkContext.scala:723) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108) at org.apache.spark.SparkContext.withScope(SparkContext.scala:709) at org.apache.spark.SparkContext.parallelize(SparkContext.scala:723) at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:33) at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:38) at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:40) at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:42) at $iwC$$iwC$$iwC$$iwC$$i ... and so on. My code is: %spark import org.apache.spark.sql._ val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc) case class Contact(name: String, phone: String) case class Person(name: String, age: Int, contacts: Seq[Contact]) val records = (1 to 100).map { i =>; Person(s"name_$i", i, (0 to 1).map { m => Contact(s"contact_$m", s"phone_$m") }) } Then, it fails after the following line: sc.parallelize(records).toDF().write.format("orc").save("people") In spark-shell, this code works perfectly, so problem is in Zeppelin. By the way, your own tutorial gives the same error: // load bank data val bankText = sc.parallelize( IOUtils.toString( new URL(" https://s3.amazonaws.com/apache-zeppelin/tutorial/bank/bank.csv"), Charset.forName("utf8")).split("\n")) case class Bank(age: Integer, job: String, marital: String, education: String, balance: Integer) val bank = bankText.map(s => s.split(";")).filter(s => s(0) != "\"age\"").map( s => Bank(s(0).toInt, s(1).replaceAll("\"", ""), s(2).replaceAll("\"", ""), s(3).replaceAll("\"", ""), s(5).replaceAll("\"", "").toInt ) ).toDF() bank.registerTempTable("bank") How to fix it? Change some dependency in pom.xml?