On Mon, 20 May 2013 11:26:07 -0500 Seth Jennings <sjenn...@linux.vnet.ibm.com> 
wrote:

> zswap is a thin backend for frontswap that takes pages that are in the process
> of being swapped out and attempts to compress them and store them in a
> RAM-based memory pool.  This can result in a significant I/O reduction on the
> swap device and, in the case where decompressing from RAM is faster than
> reading from the swap device, can also improve workload performance.
> 
> It also has support for evicting swap pages that are currently compressed in
> zswap to the swap device on an LRU(ish) basis. This functionality makes zswap 
> a
> true cache in that, once the cache is full, the oldest pages can be moved out
> of zswap to the swap device so newer pages can be compressed and stored in
> zswap.
> 
> This patch adds the zswap driver to mm/
> 
> ...

Some random doodlings:

> +/*********************************
> +* zswap entry functions
> +**********************************/
> +#define ZSWAP_KMEM_CACHE_NAME "zswap_entry_cache"

I don't think this macro needs to exist - it is only used once.

> +static struct kmem_cache *zswap_entry_cache;
> +
> +static inline int zswap_entry_cache_create(void)
> +{
> +     zswap_entry_cache =
> +             kmem_cache_create(ZSWAP_KMEM_CACHE_NAME,
> +                     sizeof(struct zswap_entry), 0, 0, NULL);

Could use the KMEM_CACHE() helper here?

> +     return (zswap_entry_cache == NULL);
> +}
> +
> +static inline void zswap_entry_cache_destory(void)
> +{
> +     kmem_cache_destroy(zswap_entry_cache);
> +}
> +
> +static inline struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
> +{
> +     struct zswap_entry *entry;
> +     entry = kmem_cache_alloc(zswap_entry_cache, gfp);
> +     if (!entry)
> +             return NULL;
> +     entry->refcount = 1;
> +     return entry;
> +}
> +
> +static inline void zswap_entry_cache_free(struct zswap_entry *entry)
> +{
> +     kmem_cache_free(zswap_entry_cache, entry);
> +}
> +
> +/* caller must hold the tree lock */
> +static inline void zswap_entry_get(struct zswap_entry *entry)
> +{
> +     entry->refcount++;
> +}
> +
> +/* caller must hold the tree lock */
> +static inline int zswap_entry_put(struct zswap_entry *entry)
> +{
> +     entry->refcount--;
> +     return entry->refcount;
> +}

Don't bother with the explicit "inline".  The compiler will ignore it
and will generally DTRT anyway.

> +/*********************************
> +* rbtree functions
> +**********************************/
> +static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t 
> offset)
> +{
> +     struct rb_node *node = root->rb_node;
> +     struct zswap_entry *entry;
> +
> +     while (node) {
> +             entry = rb_entry(node, struct zswap_entry, rbnode);
> +             if (entry->offset > offset)
> +                     node = node->rb_left;
> +             else if (entry->offset < offset)
> +                     node = node->rb_right;
> +             else
> +                     return entry;
> +     }
> +     return NULL;
> +}
> +
> +/*
> + * In the case that a entry with the same offset is found, it a pointer to
> + * the existing entry is stored in dupentry and the function returns -EEXIST

"it a pointer"?

> +*/

Missing leading space.

> +static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
> +                     struct zswap_entry **dupentry)
> +{
> +     struct rb_node **link = &root->rb_node, *parent = NULL;
> +     struct zswap_entry *myentry;
> +
> +     while (*link) {
> +             parent = *link;
> +             myentry = rb_entry(parent, struct zswap_entry, rbnode);
> +             if (myentry->offset > entry->offset)
> +                     link = &(*link)->rb_left;
> +             else if (myentry->offset < entry->offset)
> +                     link = &(*link)->rb_right;
> +             else {
> +                     *dupentry = myentry;
> +                     return -EEXIST;
> +             }
> +     }
> +     rb_link_node(&entry->rbnode, parent, link);
> +     rb_insert_color(&entry->rbnode, root);
> +     return 0;
> +}
> +
>
> ...
>
> +/*********************************
> +* helpers
> +**********************************/
> +static inline bool zswap_is_full(void)
> +{
> +     return (totalram_pages * zswap_max_pool_percent / 100 <
> +             zswap_pool_pages);
> +}

We have had issues in the past where percentage-based tunables were too
coarse on very large machines.  For example, a terabyte machine where 0
bytes is too small and 10GB is too large.

>
> ...
>
> +/*
> + * Attempts to free and entry by adding a page to the swap cache,

a/and/an/

> + * decompressing the entry data into the page, and issuing a
> + * bio write to write the page back to the swap device.
> + *
> + * This can be thought of as a "resumed writeback" of the page
> + * to the swap device.  We are basically resuming the same swap
> + * writeback path that was intercepted with the frontswap_store()
> + * in the first place.  After the page has been decompressed into
> + * the swap cache, the compressed version stored by zswap can be
> + * freed.
> + */
>
> ...
>
> +static int zswap_frontswap_load(unsigned type, pgoff_t offset,
> +                             struct page *page)
> +{
> +     struct zswap_tree *tree = zswap_trees[type];
> +     struct zswap_entry *entry;
> +     u8 *src, *dst;
> +     unsigned int dlen;
> +     int refcount, ret;
> +
> +     /* find */
> +     spin_lock(&tree->lock);
> +     entry = zswap_rb_search(&tree->rbroot, offset);
> +     if (!entry) {
> +             /* entry was written back */
> +             spin_unlock(&tree->lock);
> +             return -1;
> +     }
> +     zswap_entry_get(entry);
> +     spin_unlock(&tree->lock);
> +
> +     /* decompress */
> +     dlen = PAGE_SIZE;
> +     src = (u8 *)zbud_map(tree->pool, entry->handle) +
> +                     sizeof(struct zswap_header);
> +     dst = kmap_atomic(page);
> +     ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length,
> +             dst, &dlen);

In all these places where the CPU alters the kmapped page: do we have
(or need) the appropriate cache flushing primitives? 
flush_dcache_page() and similar.

> +     kunmap_atomic(dst);
> +     zbud_unmap(tree->pool, entry->handle);
> +     BUG_ON(ret);
> +
> +     spin_lock(&tree->lock);
> +     refcount = zswap_entry_put(entry);
> +     if (likely(refcount)) {
> +             spin_unlock(&tree->lock);
> +             return 0;
> +     }
> +     spin_unlock(&tree->lock);
> +
> +     /*
> +      * We don't have to unlink from the rbtree because
> +      * zswap_writeback_entry() or zswap_frontswap_invalidate page()
> +      * has already done this for us if we are the last reference.
> +      */
> +     /* free */
> +
> +     zswap_free_entry(tree, entry);
> +
> +     return 0;
> +}
> +
> +/* invalidates a single page */

"invalidate" is a very vague term in Linux.  More specificity about
what actually happens to this page would be useful.

>
> ...
>
> +static struct zbud_ops zswap_zbud_ops = {
> +     .evict = zswap_writeback_entry
> +};
> +
> +/* NOTE: this is called in atomic context from swapon and must not sleep */

Actually from frontswap, and calling a subsystem's ->init handler in
atomic context is quite lame - *of course* that handler will want to
allocate memory!

Whereabouts is the offending calling code and how do we fix it?

> +static void zswap_frontswap_init(unsigned type)
> +{
> +     struct zswap_tree *tree;
> +
> +     tree = kzalloc(sizeof(struct zswap_tree), GFP_ATOMIC);
> +     if (!tree)
> +             goto err;
> +     tree->pool = zbud_create_pool(GFP_NOWAIT, &zswap_zbud_ops);
> +     if (!tree->pool)
> +             goto freetree;
> +     tree->rbroot = RB_ROOT;
> +     spin_lock_init(&tree->lock);
> +     zswap_trees[type] = tree;
> +     return;
> +
> +freetree:
> +     kfree(tree);
> +err:
> +     pr_err("alloc failed, zswap disabled for swap type %d\n", type);
> +}
> +
>
> ...
>

_______________________________________________
devel mailing list
devel@linuxdriverproject.org
http://driverdev.linuxdriverproject.org/mailman/listinfo/devel

Reply via email to