
May 2015

New version numbering proposal

Where this proposal started
from…

•  Odd / even scheme doesn’t seem to be
working well
§ Most users only using even number releases

(because we tell them to)
§ Resulting in long delays for publishing new

features
§  Specific case: Cisco/Intel want to make a new

release for stable release with libfabric support
• …so why do we keep using the odd/even

scheme?

Current process

Part 1
•  2nd digit odd / even

strategy
§  Odd: feature series
§  Even: super stable

•  3rd digit changes every
release

Part 2
•  Git management

§  Release branches
§  Git tags
§  PRs from master to release

branches

Current process

master

v1.7/v1.8 branch

v1.8 v1.8.1 v1.8.2

v1.9/v2.0
branch

v1.7 …

Proposed process

•  Four major ideas:
1.  No more odd/even release series

•  All releases are good!

2.  Allow new features to release branches
3.  Slightly refine meaning of OMPI’s use of

MAJOR.MINOR.RELEASE version numbers
4.  How to transition to the new scheme

Proposed process

•  Four major ideas:
1.  No more odd/even release series

•  All releases are good!

2.  Allow new features to release branches
3.  Slightly refine meaning of OMPI’s use of

MAJOR.MINOR.RELEASE version numbers
4.  How to transition to the new scheme

S
el

f-e
xp

la
na

to
ry

Slightly refine OMPI’s use of
MAJOR.MINOR.RELEASE

MAJOR.MINOR.RELEASE

Definition

•  Open MPI vY is backwards compatible with
Open MPI vX (where Y>X) if users can:

•  Compile MPI/OSHMEM executable with vX, mpirun it with
vY, and get the same user-observable behavior

•  Invoke ompi_info with the same CLI options in vX and vY
and get the same user-observable behavior

•  Things that break backwards compatibility:
§  Change the MPI or OSHMEM API ABI
§  Change or delete mpirun / ompi_info CLI options
§  Change or delete MCA parameter names / meanings
§  Change mpirun/ORTE wire protocols

New version scheme (using same
MAJOR.MINOR.RELEASE triple)

•  Heavily influenced by Semantic Versioning
(http://semver.org)

•  Bump:
§ MAJOR: when we fork from master for a new

release series
§ MINOR: when we add user observable new

features (compared to the prior release)
§ RELEASE: all other releases

•  Only allow backwards incompatible
changes when MAJOR changes

New version scheme

master

v4.0.0 v4.0.1

v4.x branch

Bug fixes only

All 4.x versions are backwards
compatible with each other

New version scheme

master

v4.0.0 v4.0.1 v4.1.0

v4.x branch

New features added

All 4.x versions are backwards
compatible with each other

New version scheme

master

v4.0.0 v4.0.1 v4.1.0

v4.x branch

v5.x branch 5.x versions do not have
to be backwards compatible

with 4.x versions

All 4.x versions are backwards
compatible with each other

Keep many things the same

•  Generally keep 1-2 release branches alive
§  Last series + this series

•  PRs from master to release branches
•  Publicly support current and prior release

series

A few notable differences

•  No backwards incompatible changes on a
release branch
§ …once vX.0.0 is released

•  Release branch development life = ~1 year
§  Aim to stop adding major new features ~9

months after fork from master
•  Aim to fork new release branch ~June 1

annually
§ …unless there’s a reason to fork earlier

Typical release cycle estimate

master

Jan 1, year N Jan 1, year N+1 Jan 1, year N+3 Jan 1, year N+2

Active
development

Slowed
development
Maintenance
(bug fix only)

June 1 June 1 June 1

Version 5.x series

Typical release cycle estimate

master

Jan 1, year N Jan 1, year N+1 Jan 1, year N+3 Jan 1, year N+2

Active
development

Slowed
development

June 1 June 1 June 1

Version 5.x series

Version 4.x series

Maintenance
(bug fix only)

Typical release cycle estimate

master

Jan 1, year N Jan 1, year N+1 Jan 1, year N+3 Jan 1, year N+2

Active
development

Slowed
development

June 1 June 1 June 1

Version 5.x series

Version 4.x series Version 6.x series

Maintenance
(bug fix only)

How to transition to the new
scheme?

Transition

Transition proposal

•  Goals:
§ Officially release small number of new features

in the immediate future
•  Allows to meet distro release date targets

§  Based on the stable v1.8 series
•  (master is not yet ready to release as v2.x)

Transition proposal

•  Cannot change version numbering scheme
in middle of the v1.8.x series
§  That would be crazy
§  All v1.8.x releases will continue to abide by the

“old” rules
•  The first release under the “new” rules

must have a new release series name

Where we are today

master

v1.7/v1.8 branch
(old rules apply to this branch)

v1.8 v1.8.1 v1.8.5 … …

Do a one-time fork from v1.8

master

v1.7/v1.8 branch
(old rules apply to this branch)

v1.8 v1.8.1 v1.8.5 …

v1.10

v1.10 branch
(new rules apply here)

…

Maybe have more v1.8.x
releases later

master

v1.7/v1.8 branch
(old rules apply to this branch)

v1.8 v1.8.1 v1.8.5 …

v1.10.0

v1.10 branch
(new rules apply here)

…

v1.8.6

This allows us to “finish” the v1.8.x series
with bug fixes only for users who do not

want to migrate to v1.10

v1.10 branch

•  The even value of “10” helps
users while we transition
§  They’ll see it as an

“even” (stable) release
•  But we’ll allow new features

in v1.10
§  libfabric components
§  New Mellanox components
§  …

•  Also allow the usual bug fixes
§  I.e., what would have gone into

v1.8.6 and beyond

v1.10.0

v1.10 branch

v1.10 branch

•  Focus will be on a small number
of low-risk new features
§  Libfabric support, new Mellanox

components, …

•  Ralph Castain will still be Release
Manager

•  Howard+Jeff will still branch from
master this summer
§  Will be v2.0
§  Will be the focus of new

development

v1.10.0

v1.10 branch

Fork v2.x this summer

master

v1.7/v1.8 branch

v1.8 v1.8.1 v1.8.5 …

v1.10

v1.10 branch

…

v2.x branch

Expected release cycles

master

Jan 1, 2015 Jan 1, 2016 Jan 1, 2018 Jan 1, 2017

Active
development

Slowed
development

June 1 June 1 June 1

Version 2.x series

Version 1.10 series Version 3.x series

Maintenance
(bug fix only)

Version 1.8 series

Per slide 22, perhaps we’ll have a few more
bug-fix releases to finish the v1.8 series -- TBD

So what’s really different?

•  No more odd/even series
•  Changed meaning of MAJOR and MINOR
•  Allow new features to release branches
•  One-time transition to v1.10 series
•  Aim to fork new release branch regularly

§  Every ~12 months
•  Aim to limit life of release branches

§  ~1 year of devel + ~1 year of bug fixes
•  Better testing on release branches

§  Can’t assume “odd” = “can do less testing”

