I am on Windows 10.  The code given below used to work fine in older versions 
of mxnet (older than 1.2.0).  In version 1.2.0, it seems data.csv is loaded, 
but label.csv is skipped.  








I am using R 3.5.0

**### sessionInfo()**
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252  LC_CTYPE=English_United States.1252  
 
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C                         
 
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] gtools_3.8.1  Matrix_1.2-14 mxnet_1.2.0  

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.16       pillar_1.2.2       compiler_3.5.0     
RColorBrewer_1.1-2 influenceR_0.1.0   plyr_1.8.4        
 [7] bindr_0.1.1        viridis_0.5.1      tools_3.5.0        digest_0.6.15     
 lattice_0.20-35    jsonlite_1.5      
[13] viridisLite_0.3.0  tibble_1.4.2       gtable_0.2.0       rgexf_0.15.3      
 pkgconfig_2.0.1    rlang_0.2.0       
[19] igraph_1.2.1       rstudioapi_0.7     yaml_2.1.19        bindrcpp_0.2.2    
 gridExtra_2.3      downloader_0.4    
[25] DiagrammeR_1.0.0   dplyr_0.7.4        stringr_1.3.1      htmlwidgets_1.2   
 hms_0.4.2          grid_3.5.0        
[31] glue_1.2.0         R6_2.2.2           Rook_1.1-1         XML_3.98-1.11     
 readr_1.1.1        purrr_0.2.4       
[37] tidyr_0.8.0        ggplot2_2.2.1      magrittr_1.5       codetools_0.2-15  
 scales_0.5.0       htmltools_0.3.6   
[43] assertthat_0.2.0   colorspace_1.3-2   brew_1.0-6         stringi_1.2.2     
 visNetwork_2.0.3   lazyeval_0.2.1    
[49] munsell_0.4.3     

## Build info 
Build is from jermiedb:

https://github.com/jeremiedb/mxnet_winbin

## Error Message:

Error in symbol$infer.shape(list(...)) : 
  Error in operator lro: Shape inconsistent, Provided=[1], inferred 
shape=[1,1,3,3]

## Minimum reproducible example

batch_size = 1

train_iter <- mx.io.CSVIter(
  data.csv = "./matty_inv/A.csv", data.shape = c(3,3,1),
  label.csv = "./matty_inv/A.csv", label.shape =  c(3, 3, 1), 
  batch.size = batch_size
)

data <- mx.symbol.Variable('data')
label <- mx.symbol.Variable('label')

conv_1 <- mx.symbol.Convolution(data= data, kernel = c(1,1), num_filter = 4, 
name="conv_1")
conv_act_1 <- mx.symbol.Activation(data= conv_1, act_type = "relu", 
name="conv_act_1")
flat <- mx.symbol.flatten(data = conv_act_1,  name="flatten")
fcl_1 <- mx.symbol.FullyConnected(data = flat, num_hidden = 9, name="fc_1")
fcl_2 <- mx.symbol.reshape(fcl_1, shape=c(3,3, 1, batch_size))
NN_Model <- mx.symbol.LinearRegressionOutput(data=fcl_2 , label=label, 
name="lro")

mx.set.seed(99)
  autoencoder <- mx.model.FeedForward.create(
    NN_Model, X=train_iter, initializer = mx.init.uniform(0.01),
    ctx=mx.cpu(), num.round=n.rounds, array.batch.size=batch_size,
    learning.rate=8e-3, array.layout = "rowmajor",
    eval.metric = mx.metric.rmse, optimizer = "adam",
    verbose = TRUE)




[ Full content available at: 
https://github.com/apache/incubator-mxnet/issues/12428 ]
This message was relayed via gitbox.apache.org for [email protected]

Reply via email to