Running the code below causes the entire R environment to terminate.  This code 
used to work on older versions of mxnet (older than 1.2.0).  It seems to be 
related to mx.io.arrayiter





## Environment info (Required)
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252  LC_CTYPE=English_United States.1252  
 
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C                         
 
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] mxnet_1.3.0

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.16       pillar_1.2.2       compiler_3.5.0     
RColorBrewer_1.1-2 influenceR_0.1.0   plyr_1.8.4        
 [7] bindr_0.1.1        viridis_0.5.1      tools_3.5.0        digest_0.6.15     
 jsonlite_1.5       viridisLite_0.3.0 
[13] tibble_1.4.2       gtable_0.2.0       rgexf_0.15.3       pkgconfig_2.0.1   
 rlang_0.2.0        igraph_1.2.1      
[19] rstudioapi_0.7     yaml_2.1.19        bindrcpp_0.2.2     gridExtra_2.3     
 downloader_0.4     DiagrammeR_1.0.0  
[25] dplyr_0.7.4        stringr_1.3.1      htmlwidgets_1.2    hms_0.4.2         
 grid_3.5.0         glue_1.2.0        
[31] R6_2.2.2           Rook_1.1-1         XML_3.98-1.11      readr_1.1.1       
 purrr_0.2.4        tidyr_0.8.0       
[37] ggplot2_2.2.1      magrittr_1.5       codetools_0.2-15   scales_0.5.0      
 htmltools_0.3.6    assertthat_0.2.0  
[43] colorspace_1.3-2   brew_1.0-6         stringi_1.2.2      visNetwork_2.0.3  
 lazyeval_0.2.1     munsell_0.4.3  

## Build info (Required if built from source)
https://github.com/apache/incubator-mxnet/tree/master/R-package

```
cran <- getOption("repos")
cran["dmlc"] <- 
"https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/R/CRAN/";
options(repos = cran)
install.packages("mxnet")

```

## Error Message:
R environment crashes. 

## Minimum reproducible example

```
data.A = read.csv("./matty_inv/A.csv", header = FALSE)


data.A <- as.matrix(data.A)
data.A.2 <- as.matrix(data.A.2)

dim(data.A) <- c(3,3,1,k)
dim(data.A.2) <- c(3,3,1,k)

train_iter = mx.io.arrayiter(data = data.A,
                             label = data.A.2,
                             batch.size = batch_size )

data <- mx.symbol.Variable('data')
label <- mx.symbol.Variable('label')

conv_1 <- mx.symbol.Convolution(data= data, kernel = c(1,1), num_filter = 4, 
name="conv_1")
conv_act_1 <- mx.symbol.Activation(data= conv_1, act_type = "relu", 
name="conv_act_1")
flat <- mx.symbol.flatten(data = conv_act_1,  name="flatten")
fcl_1 <- mx.symbol.FullyConnected(data = flat, num_hidden = 9, name="fc_1")
fcl_2 <- mx.symbol.reshape(fcl_1, shape=c(3,3, 1, batch_size))
NN_Model <- mx.symbol.LinearRegressionOutput(data=fcl_2 , label=label, 
name="lro")

mx.set.seed(99)
  autoencoder <- mx.model.FeedForward.create(
    NN_Model, X=train_iter, initializer = mx.init.uniform(0.01),
    ctx=mx.cpu(), num.round=n.rounds, array.batch.size=batch_size,
    learning.rate=8e-3, array.layout = "rowmajor",
    eval.metric = mx.metric.rmse, optimizer = "adam",
    verbose = TRUE)
```

[ Full content available at: 
https://github.com/apache/incubator-mxnet/issues/12431 ]
This message was relayed via gitbox.apache.org for [email protected]

Reply via email to