Update the  ImageNet-1k inference accuracy, based on Gluon-model zoo 
(pre-trained model), comparison target is NVidia-GPU. 
(Model including: AlexNet, VGG16, Resnet50-v1/v2, Inception-v3, DenseNet, 
SqueezeNet, MobileNetv1.0)

On Python2
toplogy | CPU-top1 | CPU-top5 | GPU-top1 | GPU-top5
-- | -- | -- | -- | --
alexnet | 0.556455 | 0.785575 | 0.556455 | 0.785523
resnet50_v1 | 0.753367 | 0.926907 | 0.753367 | 0.926907
resnet50_v2 | 0.761327 | 0.929354 | 0.761327 | 0.929354
vgg16 | 0.720138 | 0.90662 | 0.720138 | 0.90662
densenet121 | 0.736587 | 0.917328 | 0.736587 | 0.917328
squeezenet1.1 | 0.561469 | 0.792099 | 0.561481 | 0.792099
mobilenet1.0 | 0.693531 | 0.889003 | 0.693531 | 0.889003
inceptionv3 | 0.762979 | 0.928074 | 0.762979 | 0.92814

On Python3
toplogy | CPU-top1 | CPU-top5 | GPU-top1 | GPU-top5
-- | -- | -- | -- | --
alexnet | 0.556455 | 0.785575 | 0.556455 | 0.785523
resnet50_v1 | 0.753367 | 0.926907 | 0.753367 | 0.926907
resnet50_v2 | 0.761327 | 0.929354 | 0.761327 | 0.929354
vgg16 | 0.720138 | 0.90662 | 0.720138 | 0.90662
densenet121 | 0.736587 | 0.917328 | 0.736587 | 0.917328
squeezenet1.1 | 0.561469 | 0.792099 | 0.561481 | 0.792099
mobilenet1.0 | 0.693531 | 0.889003 | 0.693531 | 0.889003
inceptionv3 | 0.762979 | 0.928074 | 0.762979 | 0.92814





[ Full content available at: 
https://github.com/apache/incubator-mxnet/pull/12591 ]
This message was relayed via gitbox.apache.org for [email protected]

Reply via email to