http://d.puremagic.com/issues/show_bug.cgi?id=10042
Summary: std.range.inits and tails Product: D Version: D2 Platform: All OS/Version: All Status: NEW Severity: enhancement Priority: P2 Component: Phobos AssignedTo: nob...@puremagic.com ReportedBy: bearophile_h...@eml.cc --- Comment #0 from bearophile_h...@eml.cc 2013-05-07 17:38:31 PDT --- I suggest to add to Phobos the inits() and tails() random-access ranges similar to the Haskell functions: http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html#v:inits This is a bare-bones forward-range implementation, with an usage example, a inefficient function that finds the maximum subsequence: import std.stdio, std.algorithm, std.range, std.typecons; mixin template InitsTails(T) { T[] data; size_t pos; @property bool empty() { return pos > data.length; } void popFront() { pos++; } } struct Inits(T) { mixin InitsTails!T; @property T[] front() { return data[0 .. pos]; } } auto inits(T)(T[] seq) { return seq.Inits!T; } struct Tails(T) { mixin InitsTails!T; @property T[] front() { return data[pos .. $]; } } auto tails(T)(T[] seq) { return seq.Tails!T; } auto maxSubseq(T)(T[] seq) { return seq .tails .map!inits .join .map!q{ tuple(reduce!q{a + b}(0, a), a) } .reduce!max[1]; } void main() { [-1, -2, 3, 5, 6, -2, -1, 4, -4, 2, -1].maxSubseq.writeln; [-1, -2, -3, -5, -6, -2, -1, -4, -4, -2, -1].maxSubseq.writeln; } Using the key function for the max() function as proposed in Issue 4705 the function becomes quite short: auto maxSubseq(T)(T[] seq) { return seq.tails.map!inits.join.reduce!(max!q{ a.sum }); } Using maxs: auto maxSubseq(T)(T[] seq) { return seq.tails.map!inits.join.maxs!q{ a.sum }; } -- Configure issuemail: http://d.puremagic.com/issues/userprefs.cgi?tab=email ------- You are receiving this mail because: -------