On Thursday, 20 March 2014 at 02:08:16 UTC, Manu wrote:
The problem is upside down. If you want to inline multiple levels, you start from the leaves and move downwards, not from the root moving upwards

Yes, that is true in cases where leaves are frequently visited. Good point. I am most interested in full inlining, but the heuristics should probably start with the leaves for people not interested in that. Agree.

Anyway, in the case of ray tracing (or any search structure) I could see the value of having the opposite in combination with CTFE/partial evaluation.

Example: Define a static scene (of objects) and let the compiler turn it into "a state machine" of code.

Another example: Define an array of data, use partial evaluation to turn it into a binary tree, then turn the binary tree into code.

Inlining should be strictly deliberate, there's nothing to say that every function called in a tree should be inlined. There's a high probability
there's one/some that shouldn't be among a few that should.

In the case of a long running loop it does not really matter. What it does get you is a chance to use generic code (or libraries) and then do a first-resort optimization. I basically see it as a time-saving feature (programmers time). A tool for cutting development costs.

Remember too, that call-site inlining isn't the only method, there would
also be always-inline...

Yes, that is the first. I have in another thread some time ago suggested a solution that use weighted inlining to aid compiler heuristics:

http://forum.dlang.org/thread/[email protected]#post-szjkyfpnachnnyknnfwp:40forum.dlang.org

As you can see I also suggested call-site inlining, so I am fully behind you in this. :-) Lack of inlining and GC are my main objections to D.

I think always-inline is what you want for some
decidedly trivial functions (although these will probably be heuristically
inlined anyway), not call-site inlining.

I agree. Compiler heuristics can change. It is desirable to be able to express intent no matter what the current heuristics are.

I just don't see how recursive
call-site inlining is appropriate, considering that call trees are often complex, subject to change, and may even call functions that you don't have
source for.

You should not use it blindly.

You can cascade the mixin keyword if you want to, that's very simple.

Not if you build the innerloop using generic components. I want this

inline_everything while(conditon){
statement;
statement;
}

I'd be highly surprised if you ever encountered a call tree where you wanted to inline everything (and the optimiser didn't do it for you).

Not if you move to high-level programming using prewritten code and only go low level after profiling.

As soon as you encounter a single function in the tree that shouldn't be inlined, then you'll be forced to do it one level at a time anyway.

But then you have to change the libraries you are using!?

Nothing prevents you to introduce exceptions as an extension though. I want inline(0.5) as default, but also be able to write inline(1) for inline always and inline(0) for inline never.

func1(){} // implies inline(0.5) weighting
inline func2(){} // same as inline(1) weighting, inline always
inline(0.75) fun31(){} // increase the heuristics weighting
inline(0) func4(){} // never-ever inline

Ola.

Reply via email to